Useless geometry?

Or: the lost geometry of circles and symmetries.

Introduction.

In the following I am going to describe the matter of my article. First of all I’ll try to explain why the geometry of circles is worth the reader's attention to observe. As for me it is interesting in itself. But I think it could be useful in different issues of mathematics as well as in teaching. It is difficult to point theorems in any other part of geometry which are easier to prove by methods and ideas of theory of groups, and the circles geometry almost begins with them. It unites in itself geometries of Euclid, Riemann and Lobachevsky. Also analysis and topology themes are twisted in it. 

Though historically the circles geometry was definitely studied – it is presented in religious art almost every nation – nowadays it’s like a stub of mathematics. Practically everyone can remember something from theorems of the geometry of straight lines or triangles: «Pythagorean trousers are equal on all legs» or «a bisectrix is a rat…», but it could happen that not only amateurs know nothing of circles geometry theorems. I try to meet this lack. Unfortunately very interesting themes showing connection of the geometry of circles with fractals and laws of aesthetics have not gone in my modest papers. But it is possible to look my experiences on a site revolt33.narod.ru or to download the program, having passed on this referencehttp://revoltp.livejournal.com/profile. I hope in the following series of papers to explain these themes.

The big role in an account is played by drawings. I hope to put out the necessary on the Internet. Some can be discovered under the specified reference. For now I describe them in detail verbally. Independent construction (maybe not exact enough) of these drawings will be a quite good exercise for the reader.
I point out three remarkable books in which detailed proofs of theorems to which I simply refer without proofs are contained, or which it is useful to read in connection with stated. Coxeter "Introduction to Geometry", Hilbert, Cohn-Vossen «Geometry and Imagination», F. Bachmann «Aufbau der Geometrie aus dem Spiegelungsbegriff». However I try to write so that preliminary acquaintance to the literature was not required.

In 19th century Swede Magnus, German Moebius, Norwegian Sofus Lie and the well-known Poincare were engaged in the geometry of circles. Unlike them (as far as I know) - I try to consider it by methods of itself.

I call sections "Papers" instead of "Heads" as I try to make them independent from each other. Nevertheless unfamiliar with the basic properties of inversion it is necessary to read its definition in item 1, otherwise all remaining will be unclear. Also one can’t manage without item 2 - its ideas used everywhere in the text. However, I have read myself a few books on mathematics “from cover to cover”, “page after page”. I discovered in them the most interesting and when definitively ceased to understand searched for explanations and definitions in the beginning, in the passed. Perhaps, I imagined such reader.

In the paper 1 I state a new method of solution of the well-known Appolonius’s problem about a circle, tangent to three given, and give inversions necessary for this definition, specify its basic properties and define the orthogonal circles. Those who are already familiar with these definitions can very fluently overview them. In the paper 2 I prove in different modes the theorem of intersected circles. I give different proofs not only because their elegance but also, mainly, because they allow generalize this theorem. The theorem gives the chance to define inversion as three intersected circles or as four points lying on one circle and has a significant place in the geometry of circles. Also the fundamental concept of a bundle of circles is defined in the paper.

In the paper 3 various theorems about circles are proved and proofs use methods of the theory of groups (permutations of four or three elements), not demanding preliminary acquaintance to this theory. In the paper 4 the projective space on the basis of concept of orthogonal circles is modeled and the basic properties of bundle of circles are summarized. Those who are interested exclusively by the circles geometry can omit all connected with projective space.

In the paper 5 compositions of inversions are regularly studied, for clearing of ideas the paper begins with the study of compositions of symmetries tangent to straight lines on a plane. Some definitions of the theory of groups are given. Also symmetries in three-dimensional space are considered and it is underlined their likeness with symmetries of the geometry of circles. A very important concept of the beplet symmetry is introduced.

In the paper 6 different problems of the geometry of circles are studied including various properties of three circles. Three circles play in the geometry of circles the same fundamental role as a triangle in geometry of Euclid. Moreover, as shown in the paper 7 the studying of «tri-circles» allows to model conveniently Euclidean and non-Euclidean geometries and to prove theorems of all geometries simultaneously. The concept of isogonal circles is introduced and the theorem of intersection of bisectrixes between circles is proved.

In the paper 8 analysis of Appolonius’s problem comes to the end and the same type problems on construction of tangential or orthogonal circles in different situations are solved. In the paper 9 the analysis of properties begun in paper 3 of four circles tangent to each other is finished, the theorem of the representation of a composition of inversions by its values on three points is proved, and the properties of angles between circles are studied.

Certainly, many theorems stated by me are known to ACs but I suppose the method and the ideas offered by me - are new and simpler, than known earlier.

Revolt Pimenov. St-Petersburg – Beregovo. 2006-2007

Earlier on the theme of the geometry of circles I wrote the paper in «The mathematical education» №3, 1999.
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Useless geometry?

Or: the lost geometry of circles and symmetries.

Paper 1.

New solution of the Appolonius’s problem about carrying out of the circle tangent to three given.

The paper summary.

In the paper fundamental concepts of the geometry of circles are introduced: symmetry of circles (inversion) and perpendicularity of circles. These concepts are used for a solution of a classical problem about carrying out of the circle tangent to three given. It is shown, that such circles can be from zero to 8, and in one, an unusual case - uncountable set.

Construction of a required circle is similar to construction of the circle tangent to three given straight lines, or ACquaintance from a school course to "a circle inscribed in a triangle". To construct this circle it is necessary to draw triangle bisectrixes (they intersect at one point!), this point also is the center of a required circle. We drop from this point perpendiculars to triangle legs. 

Drawing 1.

(A triangle, its three bisectrixes, a point of their intersection, perpendiculars from this point to legs of a triangle, an intersection point of these perpendiculars with legs, a required circle)

The circle which is passing through three intersection points of specified perpendiculars with legs of a triangle is required one.

To discover a circle tangent to three given circles it is enough to generalize this mode of construction. It is necessary to understand, what will be a "bisectrix" between circles (we know, that such a bisectrix between straight lines), and what are such "perpendicular circles". It will be made by means of transformation of inversion or "symmetry of circles".

How many are required circles?

Let's consider different cases of a disposition of three circles and "by eye" estimate, how many can be the circles tangent to all of them.

1. From three given circles one is arranged between two others.

Drawing 2.

(Circle B separates circles A and C) 

In this case each circle tangent to A and C intersects B, therefore there is no circle tangent simultaneously to A, B and C.
2.

Drawing 3.

(Three initial circles A, B, C all tangent to each other)

In this case there are two circles tangent to all of them. One lies in the area limited by arcs. We can think of it as a drop squeezed inside. Another - envelops all three initial circles. We can represent it as lasso, tightened on three circles. However, it is possible to consider, that any initial circle, e.g. A, also approaches for a problem solution: it is tangent to two others, and whether the circle tangent to itself? It is definition matter.

3.

Drawing 4.

(Three given circles are intersected among each other and points of intersection of two of them are arranged on different sides relative to the third circle.)

In this case a whole plane is divided into 8 parts. 7 of them are limited by arcs of circles and in each of them it is possible to locate one circle tangent to three initial. The eighth area of the plane is unlimited; it is also possible to locate in it a circle tangent to three given. It will envelop them, as lasso.

4.

Drawing 5.

(All three circles are intersected among each other, but the points of intersection of two are arranged by one side relative to the third circle).

In this case the plane also is divided into eight parts and there are eight circles tangent to initial, but they have other properties. Certain parts of a plane are limited by two arcs, and others – by three or four (in the previous case all parts of a plane had boundaries of three arcs). There are two required circles in the areas limited by four arcs, one – in the areas limited by three arcs, and in the areas limited by two arcs – none. In total it gives eight circles tangent to three initial, as well as in the previous case.

5.

Drawing 6.

(All three given circles tangent each other in one point)

In this case there is uncountable amount of the circles tangent to initial, all of them tangent to each other in one point, the same, as three initial. Such gang of circles is called as "a bundle of tangential circles".

Fundamental concepts:

Symmetry of circles. Orthogonal or perpendicular circles and bisectrixes. An algebraic entry for symmetry.

Bisectrix between two intersected straight lines or a bisector between two straight lines name a straight line bisecting this angle.

Drawing 7.

(Intersected straight lines A and B both bisectrixes of the basic L1 and additional L2 angles)

The angle between L1 and A is equal to the angle between L1 and B, the angle between L2 and A is equal to the angle between L2 and B. The angle between L1 and L2 always right. The reflection in line L1 images A into B, and B – into A. We can express it as formulas: L1(A)=В, L2(B)=А. As well L2(A)=В, L2(B)=А. Therefore the bisectrix between two given straight lines can be defined as a straight line about which the given lines are symmetric.

The bisectrix between circles is defined precisely in the same way!

The bisectrix between two circles is such circle about which both circles are symmetric. Symmetry between circles is called an inversion and was strictly defined by Swedish mathematician Magnus in thirties of last century. 

Definition and the basic properties of inversion:

Usually an inversion is defined through distances, algebraically. I do the same though from the further papers it will be clear, that it can be made differently or it is possible to consider inversion as undefined, axiomatic concept.

Let a circle A with the center at O and a point X are given. Point Y, such that Y lies on the straight line (OX) and O does not separate points X and Y, and |OX| * |OY| = R*R, where R - radius of circle A, is named an image of point X under inversion through circle A.
Drawing 8. 

(Circle A, its center O, a straight line (OX) and point Y)
Designate it so: A(X) =Y. From definition it is easy to see, that if A(X)=Y then A(Y)=X. Points X and Y in this case are named as "inversively conjugated through A".

Properties of inversion (symmetry of circles):

1. Points of circle A remain motionless under the inversion through A since if X lies on A then |OX|=R, |OY| = R*R / |OX| = R, that follows X coincides with Y.

2. Exterior of A inversively corresponds to interior, i.e. each point lying in circle A inversively conjugate to the point out of circle. In other words inversion turns out a circle.
3. The further point Y from circle A, the closer X to the center of circle A. For greatly distant Y X almost coincides with O. Since |OX| = R*R / |OY| and if |OY| is great, |OX| – almost a zero.

4. The center of circle A is considered as inversively conjugate to infinitely remote point.

5. Inversion images circles into circles. In other words, if some points lie on a circle – the points conjugate to them also lie on a circle.

Drawing 9.

(Circle A and two circles B and C inversively conjugated)
A(B)=С. In this case circles B and C are named inversively conjugated through circle A (and circle A is named as conjugating circle).

6. Straight lines are inversively conjugate to circles containing the center of circle A.

Drawing 10. 

(Circle A, straight line C and circle B containing O, the center of circle A. A (C)=B)
I consider in the geometry of circles a straight line as a circle of special case. All straight lines pass through infinitely remote point (which inversively conjugates to the circle center). It corresponds to our intuition that straight line is a circle of "infinitely big radius".

Now we can define a bisectrix between circles B and C. This is such circle A, that A(B)=С. But to explain, that it is the "real" bisectrix, we define what the angle between circles is. An angle between intersected circles is the angle between tangents to these circles in the intersection point.

Drawing 11.

(Intersected circles B and C and tangents to them in two intersection points of these circles)

Circles intersect at two points, but angles between tangents in intersection points are identical. (How – clockwise or counter-clockwise – to count an angle, we don’t define yet).
If circle A passes through intersection point of B and C and halves the angle between them, this circle is a bisectrix between them and A(B)=С. As well as in the case of two intersected straight lines there are two such circles. We will designate the second D, then D(B)=С. The angle between A and D is equal to 90 degrees.

Drawing 12.

(Circles B and C and two bisectrixes between them)

The major property of an angle between circles: it does not vary under inversion. If the angle between B and C is equal to  then after inversion through any circle K the angle between K(B) and K(C) also is equal to .
Drawing 13.

(Circles K, B and C their images under the inversion through K – K(B) and K(C)).

The angle between tangent circles is equal to zero. An angle between the circles which do not have common points is not defined.

The definition and the properties of orthogonal circles play the important role in what follows. Definition: circles, the angle between which is equal to 90 degrees, are called orthogonal or perpendicular.

Drawing 14.

(Two orthogonal circles B and С from the center of circle B two radii are drawn and in their ends – two tangents, they are perpendicular to these radii. The center of the orthogonal circle C is in the point of their intersection)

Image of the point X lying on circle C under the inversion through B also lies on C. Thus, circle C is an image of itself under the inversion through B, B(C)=C (points of C are resorted but remain lying on C). Similar, straight line perpendicular to given transforms to itself in reflection about given straight line.

The perpendicular dropped on a circle.

It is known, that through a given point on a given straight line it is possible to construct one and only one perpendicular. But through given point X it is possible to construct uncountable set of circles, orthogonal A. If given circle B passes through X and is orthogonal to A then A(X) again lies on B – this follows from told earlier at exposition fig. 14. Therefore all circles orthogonal A and passing through X, pass as well through A(X).

Drawing 15.

(Circle A, pair of conjugate through A points X and A(X) interfaced tangent to it, and some circles containing this pair of points)

Also it is true, that a circle containing a pair of conjugate through A points is orthogonal to A. It is possible to express this fact so: if one point of circle B under the inversion through A lies on B then all points of circle B under the inversion through A again lie on B and B is a self-mapping under this inversion: A(B)=В. I leave this without proof as well as many other properties of inversions since they are easy for discovering in any good textbook of geometry.

And yet it is possible to construct one and only one circle orthogonal given circle А that contains pair of points X1 and X2. Unlike to previous, we’ll prove it now. A case when X1 and X2 lie on circle A is described earlier (fig. 14). Let at least one of points, e.g. X1 does not lie on A. Then A(Х1)≠Х1. We could draw a circle through three points: A(Х1), X1 and Х2. It is orthogonal to A since contains the pair of conjugate through A points: X1 and A(Х1). On the other hand any circle which passes through X1 and orthogonal to A passes also through A(Х1). As by the conditions it passes also through Х2 and there is only one circle that contains three points this circle is unique. Also it passes through A(Х2).

Drawing 16.

(Circle A, pair of points X1 and X2 and the points conjugated to them A(Х1) and A(Х2), the circle passing through all these four points and orthogonal to A)

So, we have proved, that through pair of points X1 and X2 it is possible to construct one and only one circle orthogonal the given. Also therein we have proved, that if transform inversively any two points through circle A then two given points and their images lie on one circle (orthogonal to A). Further in this paper instead of words "let us construct through pair points a circle, orthogonal to A" I will speak "let us drop from pair of points perpendicular to A" (by analogy to a perpendicular to straight line).

Let's note without proofs following properties of inversion. Let it be circle B and pair of points X and Y conjugated through it. The images of points X and Y under the inversion through arbitrary circle A are conjugated through image of B under the inversion through A. It can be noted as: if Y=В(X), and С=А(B) then A(Y) and A(X) are conjugated through A(B). Also, if X and Y are not points but conjugated through B circles, their images of inversion through arbitrary circle A are conjugated to an image of B under the inversion through A.

Let's make definition of imaginary inversion. It is not required to us in this paper but it will be very important in the following. We return to definition of inversion and fig. 8. All remains invariable except one item: point O, the center of circle A separates points X and Y conjugated under imaginary inversion through A. Properties of imaginary inversion in many respects differ from properties of usual inversion: for example under imaginary inversion the points lying on A do not remain motionless, and reflected in the center of circle А. It is possible to represent imaginary inversion as a composition of usual inversion through A, and reflection in the of A.

Solution of Appolonius’s problem. (For the major special case)

Let three circles A, B, C are mutually intersected and the third circle separates intersection points of two others (see fig. 4). We choose among eight areas into which circles divide a plane one that lies in all circles (it is numbered by 1) and construct a circle tangent to three given and lying in this area. For this purpose we act as it has been mentioned in the paper beginning to similar construction of the circle inscribed in a triangle. We choose those bisectrixes of circles A, B and C which pass through area 1. For example, we draw bisectrixes between A and B and between B and C. One of the intersection points lies in the field 1 and another – in the field of 8 (out of all circles). According with property of bisectrixes which is true also for bisectrixes of circles, the bisectrix between A and C passes through these two points. We designate intersection points of the bisectrixes which are passing through area 1 X1 and Х2. 

Drawing 17.

(Three initial circles A, B, C, bisectrixes between them, passing through area 1, intersection points of these bisectrixes X1 and Х2)

Now, as well as in case with a triangle, we drop perpendiculars from these points on circles A, B, С. Each perpendicular intersects circle (to which it is perpendicular) in two points. One of these points lies on boundary of area 1, another - on boundary of area 8. We designate perpendicular intersection points on A – A1 and A2, on B – В1 and В2 and on C - С1 and С2. And let the point lying on the boundary of area 1 has the code 1, and on the boundary of area 8 – the code 2. The circle containing the points A1, В1 and С1 is a required one, i.e. tangent to A, B and C. It lies in area 1, inside all given circles. If we draw a circle through points A2, В2, С2, it will lie in area 8, outside all given circles, enveloping them as lasso.
Drawing 18.

(To drawing 17 the perpendiculars dropped from points X1 and X2 on given circles and their intersection points with circles A, B, C are added)
Drawing 19.

(The required circle which is passing through A1, В1, С1 – intersection points of perpendiculars with circles A, B, C, lying on boundary of area 1)
In order to understand a disposition of the circles arranged in remaining six areas we use an analogy to a triangle. Exactly we discover the circles tangent to all three straight lines (the continued legs of the triangle).

Drawing 20.

(Three straight lines intersected at three different points, all bisectrixes between them, intersection points of these bisectrixes, circles with the centers in the intersection points of the bisectrixes, tangent to three initial straight lines).

Three straight lines making up a triangle divide a plane into 7 areas. Three of these areas are limited by two straight lines and it is impossible to locate the circles in them tangent to all three straight lines, remaining four areas are limited by all three straight lines and there are required circles in them. We draw all possible bisectrixes between three initial straight lines (two bisectrixes between each pair of straight lines, 2*3=6 altogether). But there are only four intersection points, at each of them three bisectrixes are intersected. Every intersection point is the center of a circle inscribed in one of the areas of a plane (each intersection point of bisectrixes is equidistant from all three straight lines).

In order the analogy with three circles becomes full will consider (as well as it is used to do in the geometry of circles) straight lines as circles with an infinite radius.

Let's return to circles. Suppose that we wish to discover a circle lying in area 5 (inside circle B and outside of circles A and C). We construct bisectrixes between A and B and between B and C lying in this area. They intersect at two points Р1 and Р2 so that one of them lie in the area 5 and another in the area 4 which is in some sense “opposite" to area 5 – in which points outside of circle B and inside of circles A and C are lying. In the same sense are mutually opposite areas 1 and 8, 2 and 7, 3 and 6.

As well as in a case with a triangle - between B and C, passing through area 5 - also passes through points Р1 and Р2. Draw through this pair of points circles perpendicular A, B and C. As earlier designate intersection points of perpendiculars with circles on which they has been dropped through A1, A2; В1, В2; С1, С2. So, points A1, В1, С1 lie on boundary of area 5, and A2, В2, С2 – on boundary of area 4. The circle drawn through A1, В1, С1 lies in area 5 and is tangent to three given, and the circle which is passing through A2, В2, С2 lies in area 4 and also is tangent to three initial.

On must act similarly to construct circles lying in the remained areas, on which circles A, B and C have divided a plane.

Problems.

1. Why the circle constructed by the described mode is tangent to three initial?

2. Why three bisectrixes between circles intersect at two points?

3. What will be if three given circles are arranged differently?

Answers to first two problems will be given in following papers. And the third problem we partially investigate here. We consider the case when all three circles have no generic points and any two of them lie by one side from the third. We have defined earlier an angle between intersected circles and a bisectrix between intersected circles. We named A as bisectrix between B and C if the angle between A and B is equal to the angle between A and C and A passes through intersection point of B and C. Another definition was A(B)=С (from the fact that inversion keeps angles between circles it easily follows that A(B)=C implies the formulated equality of angles). Property A(B)=C we will take as definition of a bisectrix in the case when B and C are not intersected.

Drawing 22.

(Circles B and C that have no generic points and their bisectrix)

If B and C are not intersected, there is only one bisectrix between them. We notice a similarity with straight lines on a plane. If B and C – parallel (not intersected) straight lines then there is only one straight line A such that A(B)=С. A lies "in the middle" of B and C.
Drawing 23.

(The described straight lines, A, B, C)

Thus, there are many symmetries transforming B to C. 

In the case of nonintersecting circles B and C also there are symmetries swapping B and C, but about them we will speak in other papers of a series.

Drawing 24.

(Nonintersecting circles A, B, C, such that any two lie by one side from the third, bisectrixes between them, intersect at points Р1 and Р2, perpendiculars from Р1 and Р2 dropped on A, B, C, intersection point of these perpendiculars with those circles on which they are dropped and two circles passing through these points, tangent to three initial)

Let's act similarly investigated case. We construct bisectrixes between A and B and between B and C. If they intersect each other (they might not, in this case it is necessary to define "bundle" of circles that will be made in following papers) we construct corresponding perpendiculars. We designate intersection point of perpendiculars with the circles on which they are dropped A1, A2, В1, В2, С1, С2 and choose points A1, В1, С1 so that the circle passing through them be tangent to three initial (it always can be made). The circle which is passing through remained points A2, В2, С2 also is tangent to three initial. Both constructed circles do not separate three initial among themselves. It is possible to draw six more circles tangent to A, B and C.
Let's draw now any circle D dividing A from B and C. Moving and increasing D it is possible to construct circles D1 and D2 tangent to three initial, so that D1 and D2 also separate A from B and C.

Drawing 25.

(Circles A, B, C, D, D1, D2)

Similarly there is a pair circles dividing B from A and C and tangent to initial and a pair of circles dividing C from A and B and tangent to initial. In total it turns out 6 circles tangent to A, B and C.

To explain these and some other cases it is necessary to introduce concept of a bundle of circles and to use imaginary inversion as it will be done in following papers.

Paper 2.

The theorem of six circles or the theorem of four bundles. Bundle of circles, their definition, aspects and properties.

The summary.

At first theorem of six circles or the theorem of four bundles is considered here. After the computing, "school", proof the proofs using simple 3-d constructions are furnished. It becomes clear that the theorem is generalized both on many-dimensional spaces and in a flat variant.

Then the problem about determination of an image of point X under any inversion I on condition of unknown inversion circle and known images of two other points is solved. The problem unexpectedly leads us again to the theorem of six circles. Then "bundles" of circles (they appear at theorem generalization of six circles) are defined and their properties are considered. At the end of the paper symmetries about points and straight lines in a context of geometry of circles and elements of the theory of groups are considered (without explicit definitions and without preliminary reader’s knowledge).

Theorem statement.

There are three mutually intersected circles A, B, C. We choose an arbitrary point X on a plane and construct through it circles D1, D2, D3 so that each of these circles passed through one of pairs of intersection points of initial circles. Let circles D1 and D2 intersect at points P and Q. Then - the theorem states - circle D3 also passes through Q.

Drawing 1.

(Initial intersected circles A, B, C point P and circles D1, D2, D3)

Exception. Probably, that D1 and D2 tangent to each other at point P. Then the theorem states, that D3 is tangent to them in P.
The standard or school proof.

Commonly a problem of circles one tries to reduce to problems of straight lines, better – to vectors and to count up any angles and distances. In the given case the proof uses one important idea: if problem condition contains only words "point" and "circle" and it is required to prove that some points lie on one circle (or circles intersect at one point), then it is possible to make an inversion about any circle and solve the problem of the inverted points and circles because under an inversion circles are mapped into circles and intersection points – into intersection points of the inverted circles. If one chooses the inversion center at an intersection point of any circles these circles are mapped into straight lines, while the "school" geometry is able to prove theorems of straight lines.

Let's make the inversion with the center at P. Then circles D1, D2, D3 will be mapped into straight lines since on the condition pass through P, the inversion center. Draw outcome of inversion.

Drawing 2.

(Circles A, B, C and straight lines D1, D2, D3, each of straight lines passes through pair of intersection points of circles A, B, C among themselves)

Straight lines D1, D2, D3 have general infinitely remote point. It is an image of point P under the inversion. It is required to prove, that all of them intersect at one point Q. Let АВ1 and АВ2, ВС1 and ВС2, АС1 and АС2 are intersection points of correspondent circles. Draw two straight lines D2 and D3, they intersect at point Q. It is enough to prove, that the straight line which is passing through Q and АС1 passes also through АС2. For this purpose we use a property of secants of a circle.

Drawing 3.

(Circle O, point Q out of it, a straight line passing through Q and intersecting O at points X and X1 and a straight line also passing through Q and intersecting O at points Y and Y1)

The property connects distances: |Q,X|*|Q,X1|=|Q,Y|*|Q,Y1| only when X, X1, Y, Y1 lie on one circle ("only when" demands an improvement, that Q does not separate pair of intersection points X, Х1; and Y, Y1. And if Q lies inside the circle, on the contrary, it is necessary for Q to separate intersection points, and then the formula remains invariable).

Let's apply this property to drawing 2.

|Q,AB1| * |Q,AB2| = |Q,BC1| * |Q,BC2| since all these points lie on B. Let X be the second intersection point of a straight line (Q, АС1) with circle C. It is necessary to prove that it lies on A. It follows at once that it is АС2.

|Q, AC1| * |Q,X| = |Q,BС1| * |Q,BС2| since AC1, BС1, BС2 and X are on circle C. As it has been already told |Q,AB1| * |Q,AB2| = |Q,BC1| * |Q,BC2|, so 

|Q, AB1 | * | Q, AB2 | = | Q, AC1 | * | Q, X | АВ1, АВ2, АС1 – lie on A. So, on property of lengths of secants also X lies on A. On construction X lies on C too. This means that X is the second intersection point of A and C, as it was required. If circle C separates intersection points A and B, then, after inversion, Q separates points АС1 and АС2 and others. The proof in this case is similar.

This is a good proof, but it ignores different cases of generalization of this theorem.

The second proof. 

It uses 3-d constructions and delivers us from calculation of any distances. We consider circles drawn on an orb. In this case all theorems of the geometry of circles remain precisely the same. The circle on an orb is a line of intersection of an orb with a plane. Therefore each circle on an orb sets a plane in 3-d space (that on which lies). The opposite it is not true: the plane which does not have with orb generic points does not set any circle. However, such plane sets orb self-mapping (symmetry) which as well as inversion maps circles in a circle, keeps angles between circles, etc. But this map does not have motionless points, unlike usual inversion. It is imaginary inversion.

If two circles intersect then their planes intersect at a straight line which is passing through an orb and intersection points of this straight line with an orb are intersection points of two circles. For each plane which is passing through this straight line corresponds a circle on the orb passing through these two points (intersection points of straight line and plane). It is possible to tell, that to any straight line intersecting an orb there are corresponded circles which are passing through its intersection points with an orb.

What will be, if the straight line is tangent to orb? In this case the planes which are passing through the given straight line intersect with an orb at the circles, tangent to this straight line and each other in the point of tangency of a straight line and an orb. 

If the straight line has no generic points with an orb, some planes which are passing through it intersect with an orb, two planes - tangent to the orb, and others go by an orb. Resulting circles (intersection of planes and orb) do not intersect with each other; all circles lie one inside another and possess a number of the properties, similar to the previous two cases. This set of circles is named "bundle of circles". 

Now we prove the theorem.

Let's return to fig. 1. Consider circles A, B, D1 and D3. We know on the condition that all these circles are intersecting among themselves, and that intersection points D1 with A and D3 with B lie on one circle (it is circle C). It is required to prove, that intersection points A and B lie on one circle with intersection points D1 and D3 (circle D2 according to the theorem must contain them).

Consider the planes in which circles A, B, D1 and D3 lie. The fact that intersection points A with B and D1 with D3 lie on one circle is equivalent to that these four points lie in one plane. Let now A, B, D1 and D3 mean not only circles, but also planes in which they lie (what exactly, circles or planes – it will be clear from a context).

Intersection A with D1 is a straight line as well as B with D3. These two straight lines lie in one plane (in which circle C lies). It is required to prove, that intersection A with B and D1 c D3 - also lie in one plane. We prove by contradiction. If АВ and D1D3 do not lie in one plane, they are not intersected, hence the intersection AVD1D3 is empty. But on the condition АD1 and ВD3 are on one plane, hence these straight lines have a generic point (it is considered parallel straight lines intersected infinitely far). Hence the intersection AVD1D3 is not empty. An inconsistency, Q.E.D.

Once again reformulate the theorem. We name a bundle of planes a set of the planes which are passing through any one straight line. We name bundle of planes combinable if there is a plane laying in two these bundles simultaneously. It is equivalent to that the two straight lines organizing these two bundles lie in one plane. Let as well as earlier, A, B, D1, and D3 – arbitrary planes. Four planes can be divided into pairs by three modes.

1. (A, B) and (D1, D3)

2. (A, D1) and (B, D3)

3. (A, D3) and (B, D1)

We have just proved, that if in some case bundles are combinable (i.e. intersections of pairs of planes lie in one plane) then remaining pairs of bundles are combinable too. We will designate this statement (*). The proof as we saw, was reduced to that the combinability of two bundles is equivalent to that the pairs of the planes organizing bundles are intersected at one point. In our case is available provided by item 2. We have proved that 1 and 3 follows from this.

Now go on to circles on an orb. For this purpose we consider some orb intersecting all four planes. We have proved more the general statement. For example, let circles A, B, C do not intersect.

Drawing 4.

(Not intersected circles A, B, C, point P, circles from the bundles formed by circles (A,C) and (B,C) passing through it. Let they intersect at point Q then a circle from bundle A and B also passes through point Q. Notice, that while we have not investigated how to construct on a plane the circle passing through the given point and the given bundle.

Now, as well as it was promised in the beginning, we generalize the theorem.

Let's change labels. Let A, B, C and D – hyperplanes. We define a bundle of hyperplanes as a set of hyperplanes such that an intersection of any of two coincides (it is a hyperplane of dimension less by 1, than the initial). We name two bundles combinable if there is a hyperplane laying at once in two these bundles. Then combinability of a bundle defined for example by pair A and B with a bundle defined by pair C and D is equivalent to that АВСD is a hyperplane of dimension less by 2 than of A, B, C, D (and generally would be less by 3). The statement (*) also takes place. Locate in this multi-dimensional space a hyperspherical. Hyperplanes intersect it at hypercircles. In exactly the same way it is possible to define bundles of hypercircles and to formulate the theorem: if bundles of hypercircles (A,B) and (C,D) are combinable then (A,C) and (B,D) – combinable and (A,D) and (B,C) – combinable.

The third proof.

Its advantages: it is short; it uses only properties of circles and orbs instead of properties of planes, straight lines and distances; the solution of the flat problem uses 3-d constructions.

Let's imagine that whole construction of the given problem is arranged not on one plane (orb) and fulfilled in three-dimensional space. It is easy to show that if circles A, B, C mutually intersect at different points, all of them lie on one orb. It will be made in paper 3 but here, for the sake of economy, we will not digress. Let point P lies out of this orb. We construct orbs SA through P and A, SВ through P and B, SС through P and С (if P lies on the same orb, as A, B, C then SA=SB=SC and the proof does not right).
These three orbs generally intersect at two points. One of these points is P (on construction all of them pass through it). We designate the second point as Q. We wish to show that three circles which are passing through point P and intersection points АВ, ВС, СА also pass through Q. Intersection SA and SB passes through P and АВ, also SBSC - through P and ВС, SASC - through P and АС. These three circles contain P and intersection points of circles A, B and C among themselves. The intersection of three these circles is SASBSC is two points P and Q, hence these three circles pass through P and Q.

Q.E.D.

The case when orbs SA, SB, SC have only one generic point means that considered circles all tangent to each other. Here we will not consider it though it is not complicated. This proof also can be generalized on spaces of the higher dimensions.

Again about inversions.

Now we will attend to a problem at first sight not connected with the theorem considered earlier. Inversion is usually defined by a circle (relative to which the inversion is mapping). But if one knows images and sources of several points (in other words, pairs of conjugated points) how to define the inversion conjugating these points? Or, if we know that I(A)=B, I(C)=D how to define a conjugated point under I to given point E? 
By inversion definition, the inversion center, an image and a source always lie on one straight line.

Drawing 5.

(A straight line containing point A, its image under the inversion I(A) =B; a straight line in which point C lies, its image under the inversion I(C)=D; intersection of these two straight lines which is the center of inversion)

Let O be the center of inversion lying on the intersection of straight lines (A, I(A)) and (C, I(C)) (if these straight lines are parallel we deal with a reflection in a line. The inversion radius can be taken from the formula: |O,A| * |O,I(A)| = R*R or |O,B| * |O,I(B)| = R*R. From the same formulas we take the equality: |O,A| * |O,I(A)| = |O,B| * |O,I(B)|. Hence points A, I(A)=B, C, I(C) =D lie on one circle. (The fact that two pairs of the conjugated points lie on one circle we have proved in a different way in paper 1 while considering orthogonal circles).

Let's construct now the inversion circle. 

Drawing 6.

(Circle S containing conjugated points is added to drawing 5 and two tangents to it drawn through inversion center O)
The circle with the center at O containing points of tangency S to passing through O tangents to S is the required. Quadrate of its radius is product of lengths: |O,A| * |O,I(A)| = |O,B| * |O,I(B)| (by the theorem of secants to a circle). But we interested now not so much circle of inversion as a construction of an image of any point Е if A, I(A), B, I(B) are given. I(E) = ?

Let's draw circle ЕА through Е, A, I(A). Since it passes through the pair of conjugated under I points it is orthogonal to I and I(EA) = EA and point I(E) lies on it. Similarly circle EC drawn through E, C, I(C). By the same reason it transforms to itself under inversion through I, I(EC) = EC. It means that I(E) lies in EU. So, I(E) is the second intersection point of circles EU and ЕА (the first intersection point is E). If ЕА and EU are tangent, I (E) =E.

Drawing 7а.

(Points Е, A, I(A) and E, C, I(C). Circles ЕА and EU intersected at points Е and I (E))

Drawing 7б.

(The same but circles EU and ЕA are tangent at point Е. I(E) = E)
So, we have learnt to discover an image of arbitrary point Е by drawing only two circles if images of points A and C are known. But a problem is appearing. Let’s take any point К. It is possible to find I(K) from two pairs of conjugated points: A, I(A) and C, I(C). But we have already constructed one more pair the interfaced points: Е, I(E). If we discover I(K) from pairs conjugated points A, I(A) and E, I(E), whether the result be the same point?

Let's draw circles:

S1 through A, I(A), C, I(C); S2 through C, I(C), Е, I(E); S3 through A, I (A), Е, I (E).

Then draw three more circles: К1 through K, A, I(A); К2 through K, C, I(C); К3 through K, Е, I (E). By the proved theorem of six circles all of them intersect at one point, this point is I(E). It proves that I(E) does not depend on choosing of pairs of conjugated under I points. As far as I (E) exists and is unique, we can obtain thus the new, fourth proof, of the theorem of six circles.

Three intersected circles S1, S2, S3 determine an inversion. The image of an arbitrary point K under this inversion is determined by drawing circles through K and pairs of intersection points of these three circles.

Improvement and imaginary inversion.

We saw, that four points A, B, C D lying on one circle determine an inversion. For this purpose it is enough to divide these points on two pairs mutually conjugated points. But it is possible to divide 4 points into pairs by three modes.

Drawing 8.

(Four points A, B, C, D and six possible straight lines drawn through them. Intersection points of these straight lines: O1 – the intersection point of (A, B) and (C, D), O2 – the intersection point of (A, C) and (B, D), O3 – the intersection point of (A, D) and (C, B). In another words – a complete quadrangle, and at that A, B, C, D – a convex tetragon)

We have investigate the first case when A and B, C and D are conjugated. In this case O1 is the center of inversion, it does not separate A and B or C and D. If A and C, B and D are conjugated, the inversion center, O2, also does not separate these pairs of points. But, at any position of 4 points on a circle it is possible to divide them on pairs uniquely, so that the intersection point of the straight lines drawn through these pairs lie inside the circle on which these points lie on. Moreover, the intersection point, O3, divides conjugated points. O3 separates A and D, C and В. In this case |O3,A| * |O3,D| = |O3,C| * |O3,B| on property of chords but unlike usual inversion - A and D lie on different sides of O. As it has been told in paper 1 in this case we deal with imaginary inversion, with the center at O3. It is named “imaginary” not because “it seems to us”, but as far as vectors О3А and О3D are directed oppositely, it is naturally to assume the product |O3,A| * |O3,D| negative and equal to quadrate of imaginary number. This imaginary number is named a radius of imaginary inversion. (Or radius of imaginary inversion is a real number which is equal to it by value).

Let's return to drawing 8. We designate three inversions with the centers in O1, O2, O3 (and interchanging the position of points in pairs) accordingly I1, I2, I3. It is possible to show, that for any point K
I1 (I2 (K) = I2 (I1 (K)), I2 (I3 (K) = I3 (I2 (K)), I1 (I3 (K) = I3 (I1 (K)).

It is said, that all these inversions commute for one another. Also I1 (I2 (I3 (K))) is again an inversion through the circle on which points A, B, C, D lie. It will be proved (together with a number of theorems about circles on this theme) in the following paper. Now we return to concept of a bundle of circles.

Bundle of circles
We already faced a concept of "bundle of circles". This is a generalization of a set of circles intersected in two points. The most simple is 3-d definition. Let us take straight line A and orb S. Circles cut by various planes which are passing through A on orb S are called as "bundle". We saw, that if A intersect an orb all these circles intersect each other at two points.

Drawing 9.

(Some circles mutually intersected in two points)

Such bundle is called a “real bundle”. Intersection points are called “bundle centers”.

If A that is tangent to orbs it turns out

Drawing 10.

(Some circles tangent to each other in one point)

This case is called a "bundle of tangent to circles”. The tangency point is called a “bundle center”.

If the straight line has no generic points with an orb it turns out

Drawing 11.

(Some circles, in regular intervals enclosed one in another, reminds a condensation of lines at human eyes)

Such bundle is called "imaginary".

3-d definition conveniently unites all these cases. But it is not so convenient for theorems proofing. Therefore, I give now another definition of a bundle of circles. First two cases (drawings 9 and 10) are easy to define as a set of the circles having common points with two given. In the third case (drawing 11) circles have no generic points. But there is a pair of points P and Q such that any circle I lying in the bundle interchanges the position of them under inversion (in other words, these points are conjugated under any circle of a bundle) I(P) = Q. How to discover these points? (If any two not intersected circles A and B the imaginary bundle are known.)
We invert B in A, obtained – in B, then again in A, then in B and so on. We obtain sets tightened to points of circles (as though reflections in two mirrors). 

A, A(B), A(B (A) … it is tightened to a point inside A.

B, B(A), B(A(B) … it is tightened to a point inside B.
These points of tightening are P and Q. They called centers of an imaginary bundle.

Drawing 12.

(Some the described tightened circles)

How the centers of circles of this bundle are arranged?

Inversion interchanges P and Q, therefore it’s center lies on straight line (P, Q). The farther is the center from P and Q, the larger is circle radius. If the center lies between P and Q that is the imaginary inversion is interchanging P and Q, the inversion radius is equal to the radical square of product |O,P| * |OQ|. Notice, that it is possible to draw from any point of a plane one and only one circle lying in the given bundle (if this point does not coincide with P or Q). It is possible to show simply specifying the radius and the center of such circle by means of elementary evaluations. Also it is possible in another way, using "continuity" of a transformation of circles of a bundle. We consider, that bundle circles represent process of beginnings of circle at point P, its gradual magnification and then shrinkages to point Q. Modifying so, circle passes through all points of a plane. This property (from any point of the plane which does not coincide with the center of a bundle, it is possible to draw one and only one circle of the given bundle) is true for bundles of all three types.

For all bundle types is true that the composition of inversions under three circles of bundle is again an inversion tangent to any circle of a bundle. I.e. if A, B, C - circles of one bundle there is such circle D in this bundle, that A(B(C(X))=D (X) for any X. It is possible to take this property as the definition of a bundle of circles; we consider it more detailed later (here and in following papers).

Let's notice that a bundle of circles can be defined as a population of circles orthogonal to two given. 

1. If given circles A and B have no generic points, the set of circles orthogonal to them forms the valid bundle.

Drawing 13.

(Circles A and B without generic points, orthogonal to them circles O1, O2, O3)

All of O1, O2, O3 pass through points P and Q such, that A(P)=Q and B(P)=Q (i.e. P and Q are the centers of the imaginary bundle set of A and B). We see, that every circle of the imaginary bundle is orthogonal each circle of the real bundle and on the contrary. Such bundles are called “conjugated”. They set an original grid of co-ordinates. (The specified properties could be easily proved; in order not withdraw attention aside it will be made not here but in following papers).

2. If two given circles A and B tangent at point P, also tangent to each other at point P, they tangent to straight line, orthogonal mutual tangent A and B.
Drawing 14.

(Tangent circles A and B, their common tangent, circles O1, O2, O3 orthogonal to them, their general tangent)

The bundle which contains A and B and the bundle of orthogonal to them circles are named a “conjugated bundles”. Jointly they set the grid of co-ordinates reminding, as well as in last case, the image of force lines of any physical field.

3. If circles A and B intersect at points P and Q orthogonal, then the orthogonal to them circles are the an imaginary bundle with the centers in P and Q.

Drawing 15.

(Intersected circles A and B, orthogonal to them circles O1, O2, O3)

This case has been considered in item 1.
Now we repeat once again generalized statement of the theorem of six circles:

If there are three circles A, B, C and circle D is contained in one bundle with A and B, and circle Е – in one bundle with B and C then circle F which is contained in both bundles exists. If all specified bundles are real (i.e. we deal sets of intersected circles) the statement means that intersection points of circles Е and D and intersection points of A and C – lie on one circle. From this statement we have started to study the theorem of six circles.

We can formulate it and differently, using the dividing by pairs. Just now we divide into pairs not points but four circles A, B, C, D.

If at one partition by pairs, e.g. (A,B) and (C,D) the bundle of circles set by these pairs are combinable, then at any other partition by pairs bundle of circles will be combinable. That is bundle (A,C) is combinable with bundle (B,D), and bundle (A,D) with bundle (B,C).

Addition about straight lines and points on a plane.

We consider as an example bundles on a usual Euclidean plane. A bundle of straight lines here is called the set of straight lines which are passing through the fixed point or the set of parallel straight lines.

Drawing 16.

(Three straight lines A1, A2, A3 intersected at one point)

Let's consider a bundle of the straight lines which are passing through point P. It is easy to show that consecutive performance of two reflections in A2 and A1 (it is designated A1*A2) is the rotation by the doubled angle between them. If the angle between A1 and A2 is commensurable with Pi then consecutive performance of this rotation in the extremity-extremities transforms any point X to itself and its images form regular polygon tops. If this angle is not commensurable with pi, X under the rotation circulates with the center P, gradually filling the circle densely.

Let's show, that A1*A2*A3 – a composition of three reflections in straight lines intersected in one point – is a reflection in a line, passing through their intersection point. A1*A2 is a rotation by the doubled angle between straight lines with the center Р. Therefore A1*A2 is the same rotation as composition В*A3 if the angle between B and A3 is equal to the angle between A1 and A2 and the angle is put aside in the same direction.

A1*A2=В*A3. Hence (A1*A2)*A3 = (В*A3) * A3 = В * (A3*A3) = В (we can remove the brackets when we consider compositions of symmetries or arbitrary transformations, and one symmetry twice applied - changes nothing). So A1*A2*A3 = В, as it was required.

Drawing 17.

(Straight lines A1, A2, A3 and B, the angle between A1 and A2 is equal to the angle between B and A3 and put aside in the same direction)

Let's consider now a bundle of parallel straight lines.

Drawing 18.

(Three parallel straight lines A1, A2, A3 and parallel to them B, on the same distance from A3, that А1 from A2)

A1*A2 is a parallel translation on the doubled distance between straight lines A2 and A1 in a direction perpendicular to these straight lines. Absolutely similarly to previous case we introduce straight line B so that A1*A2=В*A3 (protracting B in the same distance from A3 as between A2 and A1 and in the same side). Just as in previous case A1*A2*A3=В.

There is no angel between parallel straight lines contrary to intersected lines but it is possible to measure distance between them.

It is interesting, that a composition of three point symmetries is always again a point symmetry. It is proved trivially:

1. The composition of two point symmetries relative to points A and B is the parallel translation on the doubled vector with the beginning in this point and the extremity in another.

Drawing 19.

(The arbitrary point X, points A(X) and B(A(X). In this triangle points A, B are lying in the middle of legs and consequently the straight line (A,B) is parallel to straight line (Х,B(A(X)))
The vector with the beginning in X and the extremity B(A(X)) is the doubled vector with the beginning in A and the extremity in B. Q.E.D. We notice that point symmetry is a composition of symmetries relative to the perpendicular straight lines intersected in this point.

Drawing 20.

(Perpendicular straight lines A and B intersected at point P, point X and points A(X), B(A(X))=Р)
Let us consider our theorem of bundles in the case of straight lines.
There are given four straight lines A, B, C, D. Bundles (A,B) and (C,D) are combinable. Hence bundles (B,C) and (A,D) are also combinable as well as (A, C) with (In, D). It is true but is empty, since all bundles of straight lines on a plane are combinable (with one exception) because there is always the straight line which is passing through the centers of bundles (a intersection point of straight lines of a bundle). Or, if one of the bundles – parallel straight lines, there is a straight line, parallel to them and passing through the center of the second bundle. The single example of uncombinable bundles – two bundles of parallel straight lines.

Drawing 21.

(One set of parallel straight lines A1, A2, A3 and the second set of parallel straight lines В1, В2, В3 thus A1 is not parallel В1)

Bundles are uncombinable, since there is no straight simultaneously parallel to A1 and В1.

Connection of bundle of circles and bundles of straight lines.

In end we point at a connection between bundles of straight lines and bundle of circles. We want to show that bundles of straight lines are equivalent (are isomorphic) to the bundle of circles having a generic point.

The real bundle of circles.

Drawing 22.

(Three circles A1, A2, A3 from one real bundle, intersected at points P and Q)

Let's realize the inversion with the center at Q (one of the intersection points of circles). All circles of a bundle are transformed to straight lines, point Q – to infinitely remote point. The bundle of the straight lines intersected at point P ensures (see fig. 17). Inversions under bundle circles are now reflections in straight lines. 

Bundle of tangent to circles.

Drawing 23.

(Circles A1, A2, A3 mutually tangent at a point P)

Let's realize the inversion with the center at the point of the tangency of circles. Circles are transformed to parallel straight lines. 

Therefore, having proved that А*В*С again is a reflection in the line where A, B, C – the straight lines which are passing through one point or parallel to each other, we have proved also that if A, B, C – circles of a bundle (real or tangential), then А*В*С is the inversion through a circle from this bundle. (It will be explained in the following papers in detail). The case when A, B, C from one imaginary bundle remained unproved.

Paper 3.

Different theorems about circles.

The paper summary.

At first theorems of tangential circles are proved: about three mutually tangent circles, about four circles tangent one by one, about connection of system of tangential circles and a bisectrix between two circles, and about system of tangent to circles of different types. Then theorems of intersected circles are proved. The proofs of theorems are based on properties permutations of four or three points, at that the preliminary knowledge of the theory of groups is not required. Further properties of four mutually tangent circles and four mutually tangent orbs are studied. In the conclusion, after definition of “isomorphism”, Steiner’s theorem is proved by means of this concept, and properties of bundle of circles that have no generic points (an imaginary bundle) are studied.

The paper, especially its second part, can be used as introduction in methods of the theory of groups.

Three mutually tangent circles.

Let's begin with the elementary problem about three mutually tangent circles. We prove, that if three circles A, B, C are mutually tangent, the circle drawn through three points of their tangency is orthogonal all three given.

Drawing 1.

(Three mutually tangent circles A, B, C, circle O which is passing through three points of their tangency, the general tangential straight line to A and B)

Let's designate points of tangency as АВ, AC and BC respectively and the circle drawn through them – O. Let O forms angle α with A (it is considered all angles arranged out of O), hence O with B forms angle π-α (since A and B tangent to), B with C – angle π-(π-α) = α. Considering point AC we see that A forms with O angle π-α. But on suppositions A forms with O angle α. Hence α=π-α, hence α=π/2. Similar reasoning takes place at any odd number of circles pairwise tangent to each other by a chain if points of their tangency lie on one circle (it reminds petals or gears). In this case they are orthogonal to the circle which passes through points of tangency.

The second proof will be a little not strict but shows very important method. We take an arbitrary point X and draw through it three circles so that one tangent to A and B at point АВ, another – B and C at point ВС, the third A and C at point AC.

Drawing 2.

(Circles A, B, C, point X and circles described above)

All these circles will be intersected in common point Y (under the theorem of bundles in previous paper). Thus arbitrary point X of a plane is mapped to point Y, I(X)=Y. Map I is an inversion, points АВ, AC, ВС are motionless under this inversion, so the circle passing through these points is the motionless circle of inversion I (i.e. remains motionless not only the circle as a whole, but also each point on this circle). But under this inversion circles A, B, C are transformed to themselves. Thus, they are orthogonal to inversion circle I, which as it has been told passes through points of tangency A, B and C. Q.E.D.

Let's discover the center of this inversion. Under inversion the center is transformed to infinitely remote point, the circles which are passing through it – to straight lines. Draw three straight lines tangent to circles A, B, C at points of their mutual tangency. They have common infinitely remote point that implies under the theorem of bundles there is also the second common point which is conjugated to infinitely remote under inversion I. It is the center of inversion I.

Drawing 3.

(Circles A, B, C, their three common tangential the straight lines intersected at point P)

It’s very simply to prove in planimetry, that |P,АB| = |P,AC| = |P,BC|.

It is interesting to trace how the circles tangent to A, B, C and further being transformed to each other, interchanging their positions under this inversion.

Drawing 4.

(A, B, C, circle Е, tangent to them from the outside, Е1, tangent to them from inside, D, tangent to A, B and Е; D1 tangent to Е1, A, B)
Circle Е tangent to A, B, C from the outside (as lasso) is mapped to circle Е1, tangent to them from inside, circle D – to D1 tangent to Е1 and A, B, etc.

It is easily to prove by means of stated the following. Let’s take two points Р1 and Р2 on circle A. We consider various pairs of circles, one of which is tangent to A at point Р1, and another – at point Р2. It is affirmed that all possible points of tangency of this pair of circles lie on a circle orthogonal A and passing through Р1 and Р2.

Drawing 5.

(Circle A, points Р1 and Р2. Circles В1, В2, В3, В4 tangent to A at point Р1. Circles С1, С2, С3, С4 tangent to A at point Р2. Besides, В1 is tangent to С1 at point Q1, В2 is tangent to С2 at point Q2, С3 is tangent to В3 at point Q3, С4 is tangent to В4 at point Q4)

It is predicated, that points Q1, Q2, Q3, Q4 lie on a circle.

Proof. Under proved earlier, circle drawn through Р1 and Р2 and a point of tangency В1 and С1 is orthogonal to A, В1, С1 (since all three are tangent to each other). This circle passes through Р1 and Р2 lying on A. But through two points lying on a circle is possible to draw the unique circle that is orthogonal to given. Hence, points of tangency В2 with С2, В3 with С3, В4 with С4, etc. lay also on this circle. Q.E.D.

The theorem can be generalized. Let pairs of points Р1, Р2 and Q1, Q2 are set on circle A and these pairs don’t separate each other. For each circles B and C such that B passes through Р1 and Р2, and C – through Q1 and Q2 and tangent to each other their points of tangency lie on a circle, orthogonal to A.

Drawing 6.

(Circle A, points Р1, Р2, Q1, Q2, circle B which is passing through Р1 and Р2, circle C which is passing through Q1, Q2 and tangent to B).

Proof. We take advantage of the theorem of bundles and the fact that as long as Р1, Р2, Q1, Q2 lie on a circle there is a unique inversion I such that I(P1)=P2, I(Q1)=Q2. At this inversion I(A)=A, I(B)=B, I(C)=C since all circles pass through the pairs of interfaced points and, hence, are orthogonal to circle of inversion I. Let X is a point of tangency of B and C, this means that I(X) is a point of tangency I(B) and I(C). But I(B)=B, I(C)=C, so I(X) is a point of tangency B and C. Their tangency point is X, and there is no other points of tangency, hence I(X)=X. So, X lies on a motionless circle of the inversion defined by pairs of points conjugated under it: (Р1,Р2) and (Q1,Q2). It is possible to study also the circles which are passing through the pairs of points (Р1,Q1) and (P2,Q2). Try to prove that points of tangency of these circles also lie on a circle which is orthogonal to I (in the case that these pairs don’t separate each other; in this case is impossible to circles passing through them to be tangent to each other).

By a passage to the limit is possible to prove the case when B and C tangent to A. One must consider points Р1 and Р2 more and more close to each other, as well points Q1 and Q2. Then B and C will be “almost tangent” to A.

Bisectrix and system of tangent to circles.

We establish now how to construct a bisectrixes of two given circles (paper 1) using a system of tangent circles. Let’s take two not intersected circles A and B. Let circle С1 is tangent to both of them (not separating them among themselves), circle С2 is tangent to A, B and С1 (besides not separating these circles), С3 is tangent to A, B and С2 and so on we add circles СК, each of which is tangent to A, B and the previous circle.

Drawing 7.

(The described system of circles)
The theorem of a middle circle or bisectrix states that all points of tangency of circles СК among themselves lie on one circle I and I is a bisectrix between A and B, i.e. I(A)=B

The proof consists of two parts. 

At first in order to illustrate the idea clearer we assume proved that any circle tangent to A and B (and not separating them) is orthogonal to bisectrix between A and B. Therefore the point of tangency of two such circles under the inversion through this bisectrix is mapped to itself, i.e. remains motionless. (Since it can be mapped only to a point of their tangency but it is unique, see the precious theorem). Hence, the tangency point lies on bisectrix between A and B, as was to be shown.

Now we prove that the circle tangent to A and B and not separating them is orthogonal to bisectrix between them. In each point P of circle A exists only one circle C tangent to B (it is possible to see considering gradual magnification of circle C tangent to A in P: at first C is small and does not get to B, then is tangent to B, then intersect, then again is tangent but "on the other side", separating A and B; and the end has no generic points with B.
Let's construct this unique circle. Let I is a bisectrix between A and B, so I(A)=B. We designate an image of point P under the inversion through I by letter Q, i.e. I(P)=Q. Any circle which is passing through P and Q is orthogonal to I. But it is always possible to draw a circle through P and Q tangent to А (we will consider different variants of similar constructions later). Let C – such circle. Since C is tangent to A, I(A) is tangent to I(C). I(A) =B, I(C)=C (since C passes through two conjugated points), therefore C is tangent to В. So, we have discovered a circle which is passing through P and tangent to A and B. It is orthogonal to I. But it has been proved that such circle is unique, therefore any circle tangent to A and B (and not separating them) is orthogonal to I. Q.E.D.

Let's prove now, that if we take four circles tangent to each other by a chain – A is tangent to B, B is tangent to C, C is tangent to D, D is tangent to A – four points of tangency lie on a circle (if among A, B, C, D there are no circles separating each other).

Drawing 9.

(Four described circles, P1 and Р4 points of tangency A with two other circles, Р2 and Р3 - points of tangency C with two other circles)

Let's consider inversion I mapping A in C. As it has been proved earlier, B and D are orthogonal to the inversion circle. Therefore under this inversion points of tangency B with A and C are swapped as well as points of tangency D with A and B. I(P1)=P2, I(P4)=P3. But as it has been shown before (the item fig. 16), the four of such points always lies on a circle. We repeat the proof: draw a circle through Р1, I (P1) =P2 and Р4. It is orthogonal to I since passes through pair of the conjugated points (Р1,Р2), therefore I(P4) lies also on it. Q.E.D.

Different cases of position of circles tangent to two given.

If circles A and B are intersected, the circles tangent to both of them are divided into two sets.

Drawing 10.

(Two intersected circles A and B, the various circles tangent to both of them, two bisectrixes between A and B)

One set of circles lies inside and the intersection of A and B and outside of both circles. Another set – in part of A without B and in part of B without A. The first set is orthogonal to one bisectrix between A and B and the second – to the second bisectrix. The proof of this orthogonality is similar to case considered earlier (when A and B were not intersected). There is a simple special case: the circles, tangent to two intersected straight lines.

Drawing 11.

(Two intersected straight lines and the circles tangent to them)

If A and B have no generic points, there are also two sets of circles tangent to them simultaneously.

Drawing 12.

(Two circles and B without generic points, some circles tangent to both and a bisectrix between them)

The first set contains circles which are not separating A and B. Terms of this set are orthogonal to bisectrix between A and В. Another set – circles which are separating A and B. We didn’t consider such circles earlier. All members of this set are intersected among themselves. It is possible to prove, that there is an imaginary inversion I such that I(A)=B and all circles of the second set under this imaginary inversion are mapped to themselves (in other words, are orthogonal to imaginary inversion). It follows that under this inversion points of tangency are swapped.

How to discover the centers of these inversions (both, the real and imaginary bisectrixes)? There are many modes. For example, we draw a straight line through the centers of circles. The center of required inversion lies on it. Then, we draw the straight lines tangent to both circles. One mode:

Drawing 13.

(Circles A and B without generic points, straight lines L1 and L2 tangent to them so that don’t separate A and B. The point of intersection of L1 and L2 – O, the straight line which is passing through centers A and B; points A1, A2 and В1, В2 in which this straight line intersects circles A and В. O lies on this straight line)

To discover radius of inversion it is enough to notice that under this inversion pair of points A1, A2 is mapped to pair В1, В2. A2 to В1, A1 – to В2 (it is possible to see, e.g., having constructed the circles tangent to A and B in these points). Therefore the radius is equal to the radical square of product |O,A1| * |O,B1| or |O,A1| * |O,B2| (I leave to reader to prove using a school plane geometry that these products are equal. But what is a bisectrix if L1 is parallel to L2?)

Also it is possible to draw another pair of tangential straight lines to A and B.
Drawing 14.

(Similar to previous but straight lines L1 and L2 separate circles A and B)

The point of their intersection O again is the center of the inversion which swaps A and B but it is the imaginary inversion. I as well as in last case maps pair of points A1, A2 to points В1, В2 but now I(A1)=B1, I(A2)=B2. Point O separates source and target of this inversion that is an indication of the imaginary inversion. Radius of this imaginary inversion similar to the previous case we find as the radical square of product |O,A1| * |O,B1| or |O,A2| * |O,B2|.

If initial circles A and B tangent to each other, all circles of a tangential bundle (A, B) – in other words, the circles passing through their point of tangency and tangent to A and B – certainly, tangent to A and B. But usually, when discovering tangent to A and B circles, members of this bundle just aren’t considered. Then remains one set of circles, tangent to A and B. These circles don’t separate A and B and are orthogonal to a unique bisectrix between A and B.
Drawing 15.

(Circles A and B, tangent to each other; the circles, tangent to them and bisectrix between A and B).

To discover a bisectrix between A and B, we draw as well as earlier a straight line through centers A and B and two straight lines tangent to them simultaneously.

Drawing 16.

(Circles A and B, tangent to each other at point P, straight line passing through their centers and its three intersection points with circles A and B (A1, P, В1); straight lines L1 and L2 intersected in O. Drawing is similar to 13)
If I – the bisectrix between A and B, I(A)=B, tangency point P remains motionless, i.e. lies on the circle of inversion I(P)=P. The inversion center, O is the intersection point of L1 and L2, |O,P| – inversion radius, I(A1)=B1, |O,A1| * |O,B1| = |O,P| * |O,P|. It is impossible to make the drawing similar to drawing 14, with tangent A and B. So, return to fig. 13. If points A2 and В1 are very close, it becomes similar to fig. 16 which is "limiting case" (when these points have coincided at point P and cannot be separated).

The offered mode of construction of bisectrixes doesn’t work if one of initial circles lies inside another.

Drawing 17.

(B lies inside circle A)

I leave investigation of it on reader’s own. However, it will be shown in following papers how to construct bisectrixes without drawing straight lines at all. (In the extremity-extremities it is not necessary in the geometry of circles to attach special significance to straight lines. But also would be silly not to use absolutely what we have learnt in geometry of straight lines, plane geometries).

Having looked into different aspects of tangent to circles, we prove now the theorem of them.

Let A and B are circles without generic points.

Drawing 18.

(Lower described system of six circles)

Let's choose on A any point Р1, draw through it circle C tangent to A and B. It is tangent to B at some point Р2. Draw through Р2 circle D tangent to A and B (it belongs to other set, than C). Circle D is tangent to A at point Р3. Draw through Р3 circle Е tangent to A and B (it belongs to other set, than D and is tangent to B at point Р4).

It is stated that the circle which contains point Р4 and is tangent to A and B (it belongs to another set than previous) again passes through Р1 (construction becomes closed). For the proof we use the theorem of bundles (paper 2)

Let's consider four circles A, B, Е, C. Pair (A,E) sets one bundle of tangent circles, pair (B,C) – another. Circle D lies in both of these bundles and connects them. Under the theorem of two bundles if bundles are combinable (A,E) and (B,C) then bundles (Е,B) and (A,C) are also combinable. So, there is circle F tangent to Е and B at point Р4 and tangent to A and C at point Р1. Q.E.D.

We could begin construction with intersected circles F and D and point Р1 lying on F, would construct tangent to them at different sides circles A, C, B, Е – the theorem would state, that Е closes the construction and is tangent to A at point Р3. Points Р1, Р2, Р3, Р4 lie on one circle which is orthogonal to all six circles of fig. 18. It follows from the fact that the circle which is passing through points Р1, Р3, Р3 is orthogonal A, C, D since these three circles are tangent to each other at these points. As well about the remained three circles it could be proved that they are orthogonal to circle drawn through points of tangency.

Now we have a rest from tangent circles and consider theorems of intersected ones.

Theorems of intersected circles and permutations of four points.

Earlier for proofing theorems it was enough for us to find that some points or circles are symmetric under some inversion. Now we need to consider a composition of inversions that is consecutive applications of several inversions.

The following fact is required for us: if map f is a composition of several inversions and f leaves motionless any three points, either f leaves motionless all points of a plane or f is inversion. The full proof will be given in paper 6, for the present we use this fact without proof and designate it for brevity an exclamation mark (!). The proof is based on that if there are three motionless points, all points on the circle which is passing through these three points are motionless too. Since there is a circle all points of which are motionless f can be only an inversion through this circle (or «motionless motion, zero»). Compare this with motions on a usual plane, with symmetries of straight lines. If under any motion all points on a straight line are motionless, this motion is either reflection in a straight line or identical motion. If under a motion there are two motionless points, all points on the straight line which contains them are motionless also.

From this fact we extract many theorems of circles.

Let's remind item 2, drawing 8.

Drawing 19.

(Points A, B, D, C lying as enumerated, clockwise, on a circle)

It is possible to separate points A, B, C, D into pairs in three ways. There is an inversion for every partition such that pair of points consists of source and target of the inversion. We designate these inversions f1, f2, f3. The following partitions correspond with them:

(A,f1(A)=B), (C, f1(C)=D)

(A, f2(A)=C), (B, f2(B)=D)

(A, f3(A)=D), (B, f3(B)=C)

Since pair (A,D) separates pair (B,C) the last inversion, f3, is imaginary. (Straight lines (A,D) and (B,C) intersect at the center of inversion f3 and it separates point A and its image D=f3(A).

Let's prove using (!) that any two considered inversions commute with each other. (Maps or operations are said to be commutative if their outcome doesn’t depend on a fulfillment order. I.e. the fact that f and g are commutative is equivalent to f(g(x)) = g(f(x)) for all х.)

Consider for example inversions f1 and f2.

Let’s show that f1(f2(A)) = f2(f1(A)). Indeed: f2(A) = C, f1(C) = D; f1(A) = B, f2(B) = D.

Absolutely similarly we check that f1(f2(B)) = f2(f1(B)), f1(f2(C)) = f2(f1(C)), f1(f2(D) = f2(f1(D)).

That is f1 and f2 commute with each other in four points: A, B, C, D. One could similarly show that f1, f2, f3 mutually commute in these points. Now let’s modify a little statement (!). We formulate it so: “if two maps got as a composition of inversions coincide in three points they either coincide in three points or differ by the inversion through a circle which contains these three points”.

Designate these points Х1, Х2, Х3. It is given: f(X1) = g(X1), f(X2) = g(X2), f(X3) = g(X3). Let map h is inverse for f (i.e. h(f(X)) = X = f(h(X)) for all points X). We will consider map h(g(X)). It is easy to see that h(g(X1)) = Х1, h(g(X2)) = Х2, h(g(X3)) = Х3.

If h(g(X)) = X then f(X) = X, i.e. f and g coincide in all points. If h(g(X)) = I(X) where I – some inversion then f and g differ by the inversion. 

Let's apply this modification to functions f1(f2(X)) and f2(f1(X)). We have shown, that they coincide not only in three, but even in four points A, B, C, D. Therefore, they coincide on all points or differ by an inversion. It is possible to prove that if transformation is got as even number of inversions (such transformations are named proper), it cannot be got as odd number of inversions (the similar fact takes place at reflections in straight lines; a reason the same: inversions as well as reflections change figures orientation to opposite). Therefore f1(f2(X)) and f2(f1(X)) cannot differ by inversion: both of them consist of two symmetries. One can prove required differently. Inversion through a circle swaps it’s inside and outside. But maps f1 and f2 both transform an interior of the circle which is passing through A, B, C, D to an interior, an exterior to exterior. So, their composition does the same. Therefore their composition cannot differ by inversion through this circle. Q.E.D.

If we consider f1(f3(X)) and f3(f1(X)), we notice that f3 transforms an interior of this circle to exterior (this is a property of imaginary inversion!), and f1 as it has been already told – exterior to exterior and interior to interior. Therefore both considered compositions translate an interior of this circle to exterior. But from here follows that they also cannot differ by an inversion through a circle containing A, B, C, D. It could take place, if one composition would transform exterior to interior and another – interior to exterior, in this case an inversion would return all on the places. 

So we have proved that f1(f2(X)) = f2(f1(X)), f1(f3(X)) = f3(f1(X)), f3(f2(X)) = f2(f3(X)). In other words, that all three inversions mutually commute. We convert this slightly abstract statement into the obvious theorem of circles. We name this theorem «the theorem of two orthogonal circles or the theorem of eight circles». (It becomes clear from drawing 20, why eight.) Consider map f1(f2(f1(f2(X)))). Since f1 and f2 commute, it is equal to f1(f1(f2(f2(X)))) and as any twice done inversion returns all points on a plane on the places, i.e. gives identical motion, considered map also returns all on the places. Now we construct map f1(f2(f1(f2(X)))) using the theorem of bundles.

Drawing 20.

(Four points A, B, C, D lying on a circle as on drawing 19; point X out of this circle; a pair of circles which are passing through X; one of them passes also through A and C, another – through B and D; the second point of their intersection Y; a pair of circles which are passing through Y; one of them passes through A and B, another – through C and D; the second point of their intersection Z; a pair of circles which are passing through Z; one of them through A and C another – through B and D; the second intersection point – H; a pair of the circles which are passing through Н, one of them passes through A and B, another – through C and D; the second point of their intersection, X – that with which we have begun construction!)

The theorem of eight circles states, that our construction is closed, that is we necessarily return to X. 

Proof. From the second part of paper 2 (or the theorems of bundles) follows that Y = f1(X), Z = f2(f1(X)), H = f1(f2(f1(X)). The second intersection point of the circle, passing through X, A, B with the circle passing through Н, C, D is f2(f1(f2(f1(X)))). But as it has been shown, f2(f1(f2(f1(X)))) = Х for all X. Hence our construction becomes isolated in the point where has begun. Q.E.D.
Let's formulate the theorem a little differently:

Four points A, B, C D, lying on one circle are given. Besides we know, that all the fours of points: (Х, A, C, Y), (X, B, D, Y), (Z, C, D, Y), (Z, A, B, Y), (Z, A, C, H), (Z, B, D, H) lie everyone on a circle. Then, the theorem states, points (Н, A, B X) lie on one circle and (H, C, D, X) – on another.

Let's take breath and consider composition h(X) = f1(f2(f3(X))). Notice, that h(h(X)) = X (in other words, that h(X) is involutive). Indeed: h(h(X)) = f1(f2(f3(f1(f2(f3(X)))))). As f1, f2, f3 all commute with each other the left part is transformed to f1(f1(f2(f2(f3(f3(X)))))). But f1(f1(X)) = X, f2(f2(X)) = X, f3(f3(X)) = X, therefore left part is equal to X. Hence h(h(X)) = X. So, h(X) is an involute. We want to show that h is an inversion through a circle which contains A, B, C, D. At first we will show that h is motionless at points A, B, C, D.

f1(f2(f3(A))) = f1(f2(D)) = f1(B) = A. Similarly we get for points B, C, D. So, h is either an inversion or leaves motionless all points of a plane. Considering inside and outside of the circle which is passing through A, B, C, D we see that h maps an inside of this circle to outside (f1 and f2 map interior to interior, and f3 – to exterior. So, their composition maps interior to exterior, as it was required). Hence, h is an inversion through a circle which is passing through A, B, C, D. (We could get this using the fact that h is a composition of three inversions and the composition of odd number of inversions cannot leave motionless all points). We remind that since f1, f2, f3 commute with each other, h(X) = f1(f2(f3(X))) = f2(f1(f3(X))) = f2(f3(f1(X))) and so on; it is possible to rearrange operations in any order.

We call the proved theorem «the theorem of four orthogonal (or commuting) inversion» (three inversions are f1, f2, f3 and the fourth – h = f1(f2(f3(X)))). We mark that since h(X) is an inversion under a circle, then if A1, B1, C1, D1 – any other points on the same circle, as A, B, C, D, h(X) is the same point, in other words, h(X) does not depend on location of points A, B, C, D on the circle. We illustrate this theorem and we formulate it more “geometrically”.

Drawing 21.

(Circle h on which points A, B, C, D lie; point X out of this circle; pair of the circles, passing one through X, A, C another – through X, B, D; their second intersection point Y. Pair of the circles passing one through Y, C, D and another – through Y, A, B; their second intersection point Z, Pair circles which is passing through Z, C, B, and another – through Z, A, D; their second intersection point P)

According to the second part of paper 2 Y = f1(X), Z = f2(f1(X)), P = f3(f2(f1(X))) = h(X) (last equality is just proved). Therefore whichever points A, B, C, D lying on a circle h, point P is an image of a point X under the inversion through h.

Let's formulate finally the theorem of four orthogonal circles in «a geometrical aspect».

A, B, C, D – four arbitrary points on the given circle h. X – an arbitrary point out of this circle and all enumerated the fours of points lie on a circle (each four, certainly, on own circle). (X, A, C, Y), (X, B, D, Y), (Y, C, D, Z), (Y, A, B, Z), (Z, A, D, P), (Z, B, C, P) – then point P is an image of point X under the inversion through h, i.e. P = h(X) whichever A, B, C, D lying on h.

Triple symmetries.
We start to prove and formulate these theorems not using drawings, "not looking". The previous theorems we proved studying different maps of 4 points A, B, C, D. In those cases when the composition of maps left motionless all these points we got the geometrical theorems. But as noted in (!) it is enough for theorems if there are only three motionless points (not four!). Let’s look, whether it is possible to define inversion using only three points A, B, C. Imagine that in the previous case points C and D come nearer to each other. In a limit we get f1(A) = B, f1(C) = C (because point D coincides with C). In other words, points A and B are swapped under the inversion and point C remains motionless (i.e. lies on the inversion circle). It is easy to see, that points A, B, C define three possible inversions f1, f2, f3 of such type:

f1(A) = B, f1(C) = C

f2(A) = C, f2(B) = B

f3(B) = C, f3(A) = A

Under each such inversion two points from three considered are swapped and the third remains motionless. Now we study properties of these three inversions and properties of their compositions and even discover angles between motionless circles of these inversions. And we did it without look at inversions, not using any drawings!

Let's consider, for example, h=f1(f2(f3(X))). Define how this composition of three inversions acts on three points A, B, С. h(A) = f1(f2(f3(A))) = f1(f2(A)) = f1(C) = C; X(B) = f1(f2(f3(B))) = f1(f2(C)) = f1(A) = B; X(C) = f1(f2(f3(C))) = f1(f2(B)) = f1(B) = A. So: h(A) = C, h(C) = A, h(B) = B. We have seen that h leaves motionless point B and swaps A and C. On points A, B, C map h coincides with f2. So, they either coincide on all points or differ by an inversion. But as both of them consist of odd number of inversions (h from three and f2 from one), they cannot differ on an inversion. Hence, they coincide on all points. 

So, f1(f2(f3(X))) = f2(X). Absolutely similarly we get that, for example, f3(f1(f2(X))) = f1(X) and, generally, a composition in any order of all three considered inversions again an inversion, exactly the second in this composition. What is equal, for example, to f1(f2(X))?

We consider how the composition f1(f2(X)) acts on points A, B, C.
f1(f2(A)) = f1(C) = C

f1(f2(C)) = f1(A) = B

f1(f2(B)) = f1(B) = A

So, f1(f2(A)) = C, f1(f2(C)) = B. f1(f2(B)) = A, i.e. f1(f2(X)) shifts A to C, C to B, B to А, cyclically moving (A, C, B) – each numeral in the next, thus the end is pasted together with the beginning. It is easy to make sure that if we apply f1(f2(X)) three times all three points stay motionless. f1(f2(f1(f2(f1(f2(X)))))) = X if X=A or X=B or X=C. Or (f1*f2)3(X) = X (at points A, B, C). Here we have designated composition f1(f2(X)) as f1*f2 and have specified that have applied it three times. Since in this composition six inversions (two inversions f1 and f2, applied three times, 2*3=6) the outcome cannot be an inversion. Since it leaves motionless three points A, B, C and is not an inversion, it leaves motionless all points of a plane. So, (f1*f2)3(X) = X for all points of a plane or (f1*f2)3 = е (the letter е usually designates the motion leaving all points of a plane motionless, as 0 in addition or turn by the zero angle, etc.). Similarly (f3*f2)3 = е and (f1*f3)3 = е.

Now, when we have defined properties of compositions made from inversions f1, f2, f3 we discover what is geometrical, obvious, sense of these properties. First of all, we prove a lemma:

If P and Q – two real inversions and (P*Q)n = e (i.e. if one performs them one by one, sooner or later one comes to the initial state, all points return on the places), then P and Q are intersected. We prove by contradiction. Assume that P and Q are not intersected. Then their composition P*Q sequentially performed gradually tightens all points to the center of the bundle formed by these circles (a problem how points move under consecutive performance of this composition, or what trajectories of points is very interesting, we will consider it in separate paper). But if points are gradually tightened, they never will return on a former place. Therefore, if P and Q are not intersected, (P*Q)n=e is impossible. Q.E.D.

Before to apply the lemma we notice that f1, f2, f3 are the real inversions, since in each case there is a motionless point. We designate now f1, f2, f3 not only inversions, but also those circles through which they are performed. Since (f1*f2)3 = е, on the lemma f1 and f2 are intersected. We designate intersection points P and Q and perform any inversion with the center at P; then f1 and f2 are transformed to straight lines so, that the composition of symmetries in these lines (see paper 2) is a rotation by the doubled angle between them. It is easy to define using this angle between straight lines since we know that this rotation performed three times returns all on the places. Let the angle between f1 and f2 is equal α; since under an inversion angles remain intact, the angle between straight lines to which f1 and f2 were transformed also is equal α. Then (2*α)*3=360, from here α=60 degrees. Similarly we get that the angles between f2 and f3 and between f3 and f1 are equal to 60 degrees. Let's show now, that all three circles f1, f2, f3 intersect at two points P and Q (i.e. lie in one bundle). We have already proved, that h(X) = f1(f2(f3(X))) = f2(X), i.e. that a composition of three inversions is again an inversion. It is possible, only if these inversions belongs to a bundle (except of case when all three inversions are orthogonal each other). (The proof of this property of compositions of three inversions will be given in following papers). Hence, f1, f2, f3 pass through two points P and Q and form with each other angles of 60 degrees. Now, when we have defined the basic geometrical properties of inversions f1, f2, f3 we draw them. 

Drawing 22.

(Three circles f1, f2, f3, their two intersection points P and Q, tangents to these circles in P. Tangents form with each other angles of 60 degrees)

Let's return to initial points A, B, C. How, knowing them, to construct circles f1, f2, f3?

Drawing 23.

(f1 passes through C and belongs to the imaginary bundle with centers A and В. f2 passes through B and belongs to the imaginary bundle with centers A and С f3 passes through A and belongs to the imaginary bundle with centers B and C)
The center of f1 lies on a straight line (A, B). We designate it as О. It is possible to write the equation connecting distances: |O,A| * |O,B| = R*R = |O,C| * |O,C| (where R – the inversion radius of f1). Based on it, it is easy to discover O. It is possible to construct a circle f1 without discovering its center. Since f1 lies in an imaginary bundle with centers A and B, f1 is orthogonal to all circles which are passing through A and В. We draw two any such circles and invert point C through them. The circle drawn through C and two got points is orthogonal to two circles which are passing through A and B, and, hence belongs to the imaginary bundle with centers A and B (see paper 2 about bundles). It is absolutely similarly acted to discover circles f2 and f3. 

Now we show how to discover images of points under inversion f1. We use ideas of the theorem of bundles from paper 2.

Drawing 24.

(Circle O which is passing through points A, B, C. Point X out of this circle. A circle which is passing through X and A, B and a circle passing through X and tangent to O at point C. The second point of intersection of these two circles. A circle which is passing through X and B, C and a circle passing through X and tangent to O at point A. The second intersection point of these circles. A circle which is passing through X and A, C and a circle passing through X and tangent to O at point B. The second intersection point of these circles.)

To construct an image of point X under inversion f1, as well as usually we construct two circles transforming to itself under inversion f1 and passing through X. Then the second intersection point of these circles is f1 (X). The circle which is passing through X, A and B is orthogonal to f1, since f1(A) = B. We prove that a circle, tangent to circle O (passing through A, B, C) at point C also is orthogonal to f1. We designate this circle H. Circle O passes through A and B and consequently is orthogonal to f1. f1(C) = C, hence C lies on f1. H, f1 and O pass through C and on condition H and O tangent to each other. Hence, f1 forms at point C an identical angle with O and H. Since the angle with O is right, the angle between f1 and X also is right.

Drawing 25.

(A circle f1 intersecting circle O at point C. A circle tangent to O at point C)
So, f1(H) = H. Q.E.D. Hence the second intersection point of H with the circle which is passing through A, B, X is required f1(X). Similarly we discover f2(X) and f3(X). This is represented on fig. 24. If diligently to perform constructions, for example, for the statement (f1*f2)3 = e (i.e. f1(f2(f1(f2(f1(f2(X)))))) = X) the beautiful illustration reminding eastern drawings can result.

Now I sum up reviewing of triple symmetry in such aspect:

Let three arbitrary points A, B, C are given, circle f1 passes through C and f1(A) = B, circle f2 – through B and f2(A) = C, circle f3 –through A and f3(B) = С. Then all of f1, f2, f3 intersect at two points and form between themselves angles of 60 degrees. Or so: through each of three points a circle conjugating two remained is drawn. All of three got circles intersect at two points and form angles between themselves of 60 degrees. The intersection points of these three circles, P and Q are symmetric under O, passing through initial points A, B, C (since this circle is orthogonal to f1, f2, f3). The four of points A, B, C, P or A, B, C, Q possess a number of interesting properties which I hope to consider in other papers. 

we prove the simple theorem before passing to the next theme. Under an inversion circles are transformed to circles. We define inversion through pairs of the conjugated points (so we usually do since paper 2) and get the new theorem of seven circles.

Drawing 26.

(Points A, B, C, D lying on a circle. Point S out of this circle and two circles which are passing – the first through S, B, D, the second through S, A, C. Second intersection point T of these circles. Point P and two circles which are passing – the first through P, B, D, the second through P, A, C. Second intersection point Q of these circles)

The theorem states, that if P, S, A, B lie on a circle, then C, D, T, Q also lie on a circle. It is enough for the proof to specify, that under inversions I, such that I(A) = C, I(B) = D (such inversion exists, as shown in paper 2), I(P) = Q, I(S) = T. If sources P, S, A, B lie on a circle, their images I(A) = C, I(B) = D, I(P) = Q, I(S) = T also lie on a circle. Q.E.D.

Four circles tangent to each other.
There is some attractiveness in drawing four circles tangent to each other. Many people did it in the childhood. At least – if three are drawn, then one wants to finish the fourth. We draw also.

Drawing 27.

(Four circles tangent to each other – A, B, C, D. (D is squeezed between three others). Six points of their tangency to themselves and three circles which are passing through these points of tangency. Construction of these three circles is described lower)

Designate 6 points of tangency by means of tangent at these point circles. Point АВ (or ВA) – point of tangency of circles B and A, etc. These six points АВ, AC, СD, СВ, DВ, АD possess a number of remarkable properties. For example АВ, АD, DC, CB lie on a circle. The proof: these four circles tangent to each other by a chain. We consider the inversion I which swaps of circles A and C. At that circles B and D remain motionless (since they tangent to both of them) I(B) = B, I(D) = D. Hence, I(AB) = (CB), I(AD) = CD, i.e. in the four of points there are two pairs conjugated under I, therefore this four lies on a circle. Q.E.D. It is possible to draw three such circles; they are designated on fig. 27.

Let's group now six points of tangency differently. We discard from four circles any, for example A. Three circles tangent to each other in three points remain. Draw through them a circle, designate it SA. According to the first theorem in this paper it is orthogonal to all three circles B, C, D. We will similarly construct circles SB, SC, SD. 

Drawing 28.

(Initial circles A, B, C, D and constructed circles SA, SB, SC, SD) are represented)
Let's prove that all of four circles SA, SB, SC, SD are tangent to each other!

Consider, for example SA and SB. The first circle passes through BC, CD, and DB (points of tangency of circles B, C, D), the second through AC, СD, and AD (points of tangency A, C, D). We want to show that circles SA and SB are tangent at point СD. Indeed, SA and SB are orthogonal to C (and to D, too) on construction. But if two circles are orthogonal the third and have on it a generic point, they tangent to each other at this point. It has been proved in the comment to fig. 25. Now we prove this slightly differently:

Drawing 29.

(Circle C; point СD; circles SA and SB tangent at this point; a tangential straight line at point СD to C and a straight line tangent to SA at point СD)

The tangent to SA at point CD is orthogonal to a tangent to C at this point and the tangent to SB is orthogonal to the same tangent at the same point (since both circles are orthogonal to C). So, tangents to SA and SB coincide at point СD. So, SB and SA tangent to each other at point CD. Q.E.D.

Let's draw now circle Е tangent to A, B, C enveloping them, as lasso.

Drawing 30.

(Initial circles A, B, C, D and circle E enveloping them)

Points of tangency to Е we designate as АЕ, ВЕ, СЕ. Е is symmetric to D in the circle passing through АВ, AC, СВ. Earlier we have designated this circle SD. Points АЕ, AC, АD and AB (lying on circle A) make «the harmonious ration» (one of the major concepts of the projective geometry and the geometry of circle). In other papers we will talk more about this ration, now I notice that from numerous definitions of the harmonious ration this is the most obvious. Notice also that points АВ, АD, DC, CB make the harmonious ration too.

We shall return to study of 4 circles tangent to each other and six points of their tangency in other papers. For now we consider:

Four orbs tangent to each other.
Three circles tangent to each other have three points of tangency. These three points of tangency obviously lay on a circle since through any three points is possible to draw a unique circle. 4 orbs tangent to each other have six points of tangency. Six points in 3-d space not necessarily lie on an orb (an orb is defined by four points not lying on a circle). We prove that all of six points of tangency of four orbs lie on an orb. It will be required two lemmas.

1. If orbs A, B, C, D tangent to each other by a chain (not separating each other), points of their tangency lie on a circle.

2. Three mutually intersected at 6 points circles lie on an orb.

It is possible to prove the first considering inversions in 3-d space similar to four circles tangent to each other by a chain. But it is possible to prove in a different way. Let A is tangent to B, B – to C, C – to D and D – to A. We designate points of tangency accordingly АВ, ВС, СD, DA. Draw an orb S through these four points. It intersect orb A at a circle, we designate this circle SA, orb B – at circle SB, orb C – at circle SC, orb D – at circle SD. Circles SA, SB, SC, SD tangent to each other by a chain at the same points as orbs A, B, C, D. Hence, these points lie on a circle (since points of tangency of the constructed circles lie on the circle). Q.E.D.

Let's prove 2. Two intersected circles are set by four points (two intersection points and one more point for each circle). We draw through these four points an orb, both of circles lie on it. The third circle on a condition intersects these two at different points, so has four generic points with this orb, what means lies on this orb. Q.E.D.

Now we prove that six points of tangency of orbs A, B, C, D lie on an orb. For the proof we use the construction, similar to fig. 27. We group orbs A, B, C, D so that they make a chain, tangency points in each case lie on a circle, these circles are intersected (at points of tangency of orbs). Therefore circles and consequently points of tangency of orbs lie on an orb. Points of tangency of orbs we designate similarly to points of tangency of circles. Exactly: points АВ, ВС, CD, DA – on circle S1; AC, СD, DB, BA – on circle S2; AD, DB, BC, CA – on circle S3.

Let's consider three circles S1, S2, S3. S1 intersect S2 at points CD and BA. S1 intersect S3 at АD and ВС. S2 intersect S3 at AC and DB. On a lemma 2 S1, S2, S3 lie on an orb. So, all points of tangency A, B, C, D lie on the orb. We designate this orb as S. If draw it and represent its intersection with orbs A, B, C, D, we get drawings 27 and 28. S is orthogonal to all four initial orbs. But we won’t prove this here.

Steiner’s theorem of system of circles tangent to each other.
At last we prove Steiner’s theorem. The proof shows efficiency of concept of isomorphism and allows an occasion to consider an imaginary bundle of circles in detail. The theorem statement: let there are two circles A and B, B lies inside А. We take the arbitrary circle С1 lying inside A, out of B and tangent to both of them. Now we construct system of circles С2, С3, С4 … such, that each of them is tangent to previous and both initial circles A and B
Drawing 31.

(The described system of circles. Circles СК enclose B as petals and are limited by circle A enveloping them as lasso)

Probably, that as it is represented in drawing, construction becomes closed, certain of circles СК become tangent to С1. Then, it is possible to count up, how many circles are in the chain. Probably, that construction never becomes closed. The theorem states that the outcome (the amount of circles in the chain and whether it becomes closed) does not depend on a choice of circle С1 and a starting circle for construction. I.e., that if we take any other circle D1 tangent to A and B and arranged out of B and inside A and will construct a chain of circles D1, D2, D3… then both chains СК and DK become closed simultaneously and number of circles in two chains is identical.

Proof.

1. We assume, that circles A and B concentric, i.e. their centers - coincide.

Drawing 32.

(Is similar to fig. 31, but A and B concentric)

Then we can rotate all circles in the chain around common center of A and B so that circle С1 coincides with circle D1. It is easily to see that thus circle C2 coincides with D2 and circle СК – with circle DK. Circles A and B remain on a place. Thereby isomorphism between chains СK and DK (exact definition of isomorphism see in the end of the paper) is established. All properties of one are also of another. Hence, they have identical number of circles. Q.E.D.

2. The general case. Circles A and B are not concentric. We want to show that in this case is possible to pass by means of an inversion to concentric circles. Let P and Q – centers of the bundle formed by circles A and B. Let’s make inversion I with the center at one of the bundle centers, for example, in Р. P is transformed to infinitely remote point. Consider a bundle formed by circles С = I(B) and D = I(A). Its centers – I(P) and I(Q). I(P) is the infinitely remote point. Since infinitely remote point is conjugated to the circle center (regard to this circle), the centers of circles C and D coincide (and are the second center of the bundle formed C and D and point I(Q)).

Let's give also the second proof of this fact. We will a bundle of circles, orthogonal to A and В. All of them pass through P and Q. Under any inversion I with the center at P circles of this bundle transform to the straight lines intersected at point I(Q).

Drawing 32.

(Circles I(A) and I(B), point I(Q), straight lines which are passing through point I(Q))

Circles I(A) and I(B) should be orthogonal to all these straight lines. But it is possible, only if their centers coincide and there is a intersection point of these straight lines, i.e. I(Q). (The straight line is orthogonal to circle in only case when passes through its center). Hence, I(A) and I(B) have the common center. We have proved that it is possible by means of an inversion to transform two arbitrary circles without common points to concentric circles. So, a bundle of circles without common points is ordered just as a bundle of concentric circles. Also a bundle of intersected circles is similar (or isomorphic) to a bundle of straight lines which are passing through common point.

Now we prove Steiner’s theorem.

Let chain C1, C2, C3, … becomes closed at step K, i.e. СК is tangent to C1. We want to show that any other chain D1, D2, D3,… becomes closed at step K. Consider inversion I mapping A and B to concentric circles. Chain СК is transformed to chain I(C1), I(C2), I(C3),… constructed over concentric circles I(A) and I(B), chain DK – to chain I(D1), I(D2), I(D3),… also constructed over I(A) and I(B). Earlier it has been proved, that if I(C1) is tangent to I(CK), I(DK) is tangent to I(D1) (since these chains are constructed over concentric circles). But if I(DK) is tangent to D1, DK is tangent to D1 (inversion transforms tangent circles to tangent). Q.E.D.

The given theorem has also shorter proof. It is unessential to consider concentric circles. Let there are two chains of circles: С1, С2,..., СК and D1, D2,…, DK (fig. 31). With the help of a composition of two inversions it is possible to map С1 in D1 so, that A and B remain motionless, С2 is mapped to D2, etc. It proves that chains СК and DK have identical properties, i.e. if one becomes closed, another also becomes closed and the number of chain members is identical. We don’t consider here this composition; I leave this on reader’s own. However, this composition will be specified in the paper where we will investigate trajectories of motion of points and circles.

The considered proof gives us an occasion to reduce properties of a bundle of circles without common generic points to properties of a set of concentric circles. It is trivial to prove for concentric circles that a composition of three inversions is again an inversion (through circle from the same concentric bundle), and a composition of two inversions – a similarity (or a homothety) with the center at the center of circles. (From here also follows that a composition of three inversions is again an inversion).

During the proof of Steiner’s theorem (and actually in many other places) we used concept of "isomorphism". This is very general concept used in many fields of mathematics. In school geometry its analogue is the concept of "congruence of figures”. Now I make isomorphism definition suitable in a context of geometry of circles. Let we have two sets of objects (points, circles or any other objects). The first set: P1, P2, P3, … and the second: Q1, Q2, Q3, … There is also a one-to-one map f from the first set to the second: f(P1) = Q1, f(P2) = Q2, f(P3) = Q3 etc. and all properties between members of the first set (angles, symmetry, etc.) do not vary by map f. Then map f is called an isomorphism between two these sets. 

If we have to prove something about members Р1, Р2, Р3 … and f – isomorphism, we can prove demanded for f(P1), f(P2), f(P3) … The result is true also for members Р1, Р2, Р3 … We used it often, for example, when used the inversion I transforming some circles to straight lines and proved the theorem of straight lines that was more customary. For example, the "school", first proof of the theorem of bundles is such. Also we established isomorphism between a bundle of intersected circles and a bundle of the straight lines which are passing through a point, and recently we have established isomorphism between a bundle of circles which have no common points and concentric circles.

Isomorphism in the mathematician is the same what is exact comparison in the literature.

Paper 4.

Modeling of a projective geometry by means of circle and orb geometry.

The paper summary.

In paper the obvious model of a projective plane and a projective space on the basis of circle geometry is constructed. Obvious geometrical interpretation of algebraic relations (А*В*C)2 = е and А*В=В*А (commutability) are given. Connection of this model with calculus of infinitesimals and connection of identity (А*В*C)2 = е with Pascal’s theorem is shown.

In the application the basic properties of bundles are shortly formulated and a view on a point as a special case of circle is explained. The paper prepares for modeling and study of geometries of Riemann, Euclid and Lobachevsky by methods of geometry of circles.

In a little bit other foreshortening the theme is considered in my paper published in «Mathematical education» magazine (№3, 1999).
Projective plane modeling. A-transformations.

When we proved the theorem of bundles in paper 2, we have used the fact that a circle on an orb lies in some plane and properties of intersections of circles on an orb can be correlated with properties of intersections of straight lines and planes in 3-d space. That is with projective space. In this paper we regularly show the connection between projective geometry (geometry of straight lines, points and planes) with the geometry of circles. Begin with a flat case.

Let's consider arbitrary circle O and a population of orthogonal circles to it. There is one and only one inversion corresponding to each point of a plane (except lying on the circle) and orthogonal to O.
Drawing 1.

(Circle O and orthogonal to it a circle I, the center of a circle I – A. Two tangential straight lines from A to O, tangent to O at points P and Q, two secants from A to O. The first intersects O at points D and F, the second – at points B and C)

Really, let A ​– an arbitrary point out of O – is the center of some circle I, orthogonal to O. Then, by inversion definition all straight lines which are passing through any point and its image (under this inversion) are intersected at point A. Under the theorem of secants (we used it, e.g., proving the theorem of bundles) we have:
|A,A(B)| * |A,B| = |A,D| * |A,A(D)| = |A,A(P)| * |A,P| = |A,P|2 

Here through A(B) the image of point B under the inversion through I (with the center at A and orthogonal to O) is designated. P – the point of tangency of the straight line passing through A with O, therefore A(P) = Р and the inversion radius is |A,P|. This inversion acts on the whole plane, but it is important to us only its action on O. Also for the near future we can forget about a circle I. Only point A – the inversion center – is important to us. After all, point A completely sets mapping of circle O to itself. To discover an image of an arbitrary point X lying on O under this map it is necessary:

1. To draw straight line (A,X).

2. To discover the second intersection point between (A,X) and O (the first intersection point – X).

3. This point also is the image of point X under the map set by point A.

We name this map - «circle A-transformation to themselves». The point that defines map we name «the map center». If (A,X) is tangent to O, we define that A(X) =Х; X is a motionless point under A-transformation. A-transformation of circle O to itself can be continued on a whole plane and it is the inversion under circle I. But, as it has been told, for now we are interested how A-transformation acts on circle O.
If P and Q are motionless points of A-transformation, any pair of points X and A(X) harmoniously separate pair P and Q. (The concept of the harmonious ration plays the major role in projective geometry but I don’t investigate it in this paper).

If point A lays inside circle O, intersection points of any straight line passing through A with circle O lie on different sides from A. Therefore, A defines imaginary inversion.

Drawing 2.

(Circle O, point A inside it, diameter O on which A lies, perpendicular from A to this diameter, intersection points of this perpendicular with O – X and A(X). Two secants from A, one intersects O at points Z and A (Z), another – at points Y and A(Y))

Under the theorem of chords: |A,Z| * |A,A(Z)| = |A,Y| * |A,A(Y)| = |A,X| * |A,A(X)|. This sets imaginary inversion with the center at A. As it should be under imaginary inversion, there no motionless points, since if A lies inside O, it is impossible to draw from A a straight line tangent to O. Radius of inversion R is equal to the radical square of the specified product. Geometrically it can be discovered from the fact that R = |A,X|, if |A,X| = |A,A(X)|. This equality is attained if segment [X,A(X)] is perpendicular to diameter O passing through A as it is represented on fig. 2. Again, we consider an action of this imaginary inversion only on circle O without remaining points of a plane. 

So, we see, that any point of a plane which is not lying on circle O sets one and only one inversion of a plane under which circle O transforms to itself. If A outside of a circle – this is a usual real inversion, if inside – imaginary. At study of an action of these inversions on O it is possible to use the A-transformations described above (the image of point X on circle O is the second intersection point of a straight line (A,X) with O. It is proved trivially, that A(A(X)) =Х (in other words, A(X) – involute map).

Let A – outside of a circle (fig. 1). In this case the A-transformation has two motionless points P and Q. The A-transformation as if turns the inside of circle O out, swapping two arcs into which points P and Q have divided the circle. It reminds, as an inversion on a plane swaps an interior and an exterior of a motionless circle of inversion. We can tell else that the pair of points P and Q circles O sets involute map (or symmetry) of circle O to itself. It is necessary to draw tangents to O and to discover their intersection point between themselves. This point sets required A-transformation of the circle. Notice, that we had to “fall outside the limits” circle O for definition of this map.
The specified method does not work in one case. If points P and Q are diametrically opposite points on O. Then tangents in these points are parallel to each other and don’t intersect on the Euclidean plane.

Drawing 3.

(Circle O, diametrically opposite points on it P and Q, tangents to O at these points, straight line (P,Q), points on O: X, Y, Z, I(X), I(Y), I(Z) such, that straight lines (X,I(X)), (Y,I(Y)), (Z,I(Z)) all are parallel to each other and to the specified tangents)

To guess, what map of O to themselves is set by points P and Q it is possible to recollect, that we spoke about orthogonal to O circles. A circle, orthogonal to O and passing through the pair diametrically opposite points on O is a straight line. (As it has been told, a straight line is a circle with infinitely remote center) We draw this straight line I. Symmetry in this straight line transforms circle O to itself, leaving points P and Q motionless. We see that each pair of points on circle O sets "inversion" or symmetry of this circle. Notice a likeness with a 3-d case. A circle on an orb sets orb inversion so, that the circle lies on some plane intersecting the orb; a pair of points on a circle sets circle inversion, and the pair, of course, lies on some straight line intersecting the orb.

It is possible to get a reflection in a line passing through the center of circle O by means of the PASSAGE TO THE LIMIT.

Drawing 4.

(Circle O, its center E, diametrically opposite points P and Q, straight line (Е,A) orthogonal straight line (Р,Q), points A, A1, A2 on this straight line, tangents to O drawn through these points, tangency points)

Let point A moves away from circle O along straight line (A,E), passing through points A1, A2 … We see, that the tangents to O which pass through points A, A1, A2 are tangent to O at the points that are more and more closer to P and Q, where P and Q – the extremities of diameter, perpendicular to (A,E). Maps A(X), A1(X), A2(X) more and more remind a reflection in line (Р,Q). Secants from points A, A1, A2 are more and more nearer to parallel to straight line (A,E).

Let now any point B moves along the straight line parallel to (A,E) to the same direction as A.

Drawing 5.

(Circle O, its center E, diametrically opposite points P and Q, a straight line (Е,A) orthogonal to straight line (Р,Q), points B, В1, В2 on a straight line parallel to (Е,A), tangents to O drawn from these points, tangency points.)

We see that motionless points of maps B(X), В1(X), В2(X) come nearer to points P and Q and maps itself more and more remind a reflection in line (Р,Q), and the secants which are passing through B, В1, В2 are closer to parallel to (AE) straight lines (the angle between secants decreases). It is similar to how the angle of incident rays varies at light source removal. If point C lies on straight line (A,E) on other side from O than point A and moves away further from O, C(X) comes nearer to the reflection in line (Р,Q) with removal C.

Drawing 6.

(Circle O, diametrically opposite points P and Q, point A, point C on the other side from O).

Reflections of circle O in the straight lines which are passing through its center we also name A-transformations, meaning that their center is infinitely removed from A coinciding with an intersection point of tangents to O at diametrically opposite points. To every «direction of removal from O» perpendicular to it straight line which is passing through the center of the circle correspons.
Algebraic properties of A-transformations and their geometrical interpretation.

Let's ask now ourselves a question when A-transformations commute (i.e. the order in which they act is indifferent). Let B(X) and C(X) are two commuted A-transformations, that is C(B(X)) = В(C(X)) for all Х. This equality should be also true for those X at which B(X) = X, i.e. for motionless points of map B. Substitute B(C(X)) = С(X) (since B(X) = Х). C(B(X)) = В(C(X)) = С (i.e. from commutative property B(X) and C(X) follows that if X is a motionless point of map B, C(X) – also the motionless point of map B, in other words, C somehow rearranges motionless points of map В. Similarly, B is somehow maps motionless points of C to itself.

We know that at any A-transformation two, one or zero motionless point depending on whether the center of A-transformation is outside, inside or on circle O. Consider the case when there are two motionless points. Let these points are P and Q. B(P) = Р, B(Q) = Q. C maps this pair of points to itself. Two cases are possible:

1. C(P) = Q, C(Q) = P

2. C(P) = P, C(Q) = Q (C as well as B leaves points P and Q motionless.

What do these cases mean geometrically? The first case means that C lies on a straight line which is passing through P and Q.

Drawing 7.

(Point B, two tangential straight lines to circle O, passing through B, points of their tangency with O – P and Q, point C lying on a straight line (Р,Q))

The second case means that C lies on a straight line tangent to O at point P and on a straight line, tangent to O at point Q, i.e. in the intersection point of these straight lines. And this is point B. If point C coincides with point B, certainly, these maps commute. They simply coincide with each other, and any map commutes with itself. But this case we won’t consider.

So, the case 1 only is interesting to us, when C swaps motionless points of map B (points P and Q). We want to show that the condition “C lies on a straight line which is passing through points P and Q” is not only necessary, but also there sufficient. More precisely – I will refer to for a long time known geometrical facts from which it follows.

Drawing 8.

(Circle O, points B and C out of it, P and Q – points of tangency with O of two straight lines which are passing through B, C lies on (P, Q); point X on O; straight lines (B,X) and (C,X), intersection points of these straight lines with O – B(X) and C(X), straight lines (C,B(X) and (B, C(X)); an intersection point of these straight lines with О)

Using given X, C, B points B(X), C(X), C(B(X)), B(C(X)) are constructed. Commutativity of maps C and B means that points C(B(X)) and B(C(X)) coincide, i.e. straight lines (C,B(X)) and (B,C(X)) are intersected (provided that C lies on straight line (Р, Q)). It is possible to formulate differently: under the given condition (that C lies on (Р, Q)) if a pair of points of circle O lies on a straight line that contains B, the straight lines drawn through C and this pair of points intersect O at the points also lying on a straight line together with B.
There is a geometrical theorem that proves this fact. We don’t produce here this proof. But some definitions connected with the theorem will be necessary to us. The theorem is usually proved within the limits of the theory «polars and poles». We give the main definition of this theory:

Let point B out of (or on) circle O is given and tangential straight lines to circle O through this point are drawn. Straight line L which is passing through points of tangency of these straight lines with O is called as a polar of point В. And point B is called as a pole of straight line L. In terms of A-transformations it sounds so: «a polar of point B is called the population of such points that A-transformations with the centers in these points swap motionless points of map B».

The first property of polars is reciprocity. If any point X lies on a polar of point B then B also lies on X. The second property of a polar: if three points lie on a straight line, their polars intersect at one point. I suggest the reader formulating on their own this property in terms of A-transformations.

From the geometrical theorem adduced above follows that if point C lies on polar B, A-transformations with the centers in these points commute. And, inversely, if A-transformations commute, they lie on a polar of each other. We pay attention to connection of property of reciprocity of polars with commutativity. If B commutes with C then C commutes with B – this obvious fact expresses property of reciprocity.

We considered a case when B lies out of O. If B lies on O, a tangential straight line to O at point В is named as polar of B. But if B lies inside O? In this case polar of B is a population of points which are the poles of straight lines which are passing through B. According to property of a duality these points lie on a straight line. This straight line also is a polar of a point B. Note, that in this case the polar has no generic points with O. Because a pole of the straight lines intersecting O is out of О. In terms of A-transformations it is possible to tell that a polar of point B is a population of points C, such that A-transformations with the centers at points B and C commute among themselves. This definition envelops cases when B is out- or inside of O. And what is more, if B lies on O, we can also connect with it map B(X) = В whatever is Х.

Drawing 9.

(Circle O, points B, X, Y, Z on it and the directed segments [X, B], [Y, B], [Z, B])

B(X) = В(Y) = B(Z) = В. This map, of course, is not one-to-one, moreover – involute. The image of all points is identical – point B. But a problem about commutability makes sense. Let A-transformation with the center at C commutes with the map B(X) = В just described. C(B(X)) = В(C(X)), the left part is equal to C(B), right – B. Therefore, C(B) = В, and this is equivalent to that C lies on polar B (a straight line tangent to O at B). Drawing 9 directly brings to thought on connection of this theme with infinitesimal calculus (the circle is mapped to an infinitesimal neighborhood of point B). Now we can formulate axioms about straight lines and points in terms of A-transformations. It will be a little smart. Let Е and D – two points of a plane. They set A-transformations with the centers in these points. There is one and only one map commuting with them by both. We will designate it as B. Population of all A-transformations commuting with B we name «a straight line which is passing through Е and D» This definition provoke questions.

Why there is one and only one map A, commuting with E and D?

All centers of the A-transformations commuting with Е lie on a polar to Е, and all centers of the A-transformations commuting with D – on a polar to D. If these two straight lines are intersected, the point of their intersection is the center of required map. If these two straight lines are parallel (it is possible only if Е and D lie on one straight line with the center of circle O), the required map is a reflection in (Е, D).
Drawing 10.

(Circle O, its center H, points Е and D on one straight line with Н, straight lines passing through Е and tangent to O at points P and Q, straight lines passing through D and tangent to O at points Р1 and Q1, straight lines (Р1,Q1) and (Р,Q) are parallel to each other and perpendicular to straight line (Е,D))

I leave on reader’s own to prove, that in this case (if polars Е and D are parallel) Е and D lie on one straight line with the center of circle O and reflection in (Е,D) commute with A-transformations with the centers in Е and D.

So, we have proved that map B commuting with Е and D is only one. Therefore pair of A-transformations with the centers in Е and D really univalently set a population of A-transformations, such that they commute with a map commuting with Е(X) and B(X). Now it is necessary to prove, that "straight lines" defined thus are always intersected at one point, i.e. that there is one and only one A-transformation lying in both point sets. But, as a matter of fact, we have already done it. Suppose, A-transformations of the first straight line commute with В1 (in other words В1 is a pole of this straight line), and the second straight line – with В2 (В2 is a pole of this straight line). There is one and only one A-transformation commuting with В1 and В2 simultaneously, it and is required intersection of two straight lines defined thus. In some cases intersection points can lie on circle O. The point lying on O as it has been shown also sets map which we have considered in this case.

Let's repeat: A-transformations are called as lying on a straight line if there is any A-transformation commuting with each of them. Remarkably, that the centers of these A-transformations are represented by the points lying on one straight line! See fig. 8.

So, we have shown that A-transformations model a projective plane.

Pascal’s theorem and A-transformations, the equation (S*T*F)2 = e.

 Now we establish connections between A-transformations and Pascal’s theorem. For this purpose we recollect that A-transformations are acts of inversions on orthogonal to them circle О. But maps lying on a straight line – by definition – commute with a certain A-transformation. We designate it B. So, the inversions which contractions are A-transformations commute with В. Besides, these inversions commute with O. Then they lie in one bundle (dual to the bundle in which A and O lie, see paper 2). All inversions from one bundle have property: the composition of any of three of them is involute, again inversion under a circle (valid or imaginary) from this bundle. That is for any three inversions S, T, F from one bundle S(T(F(S(T(F(X)))))) = Х or expressing differently (S*T*F)2 = e. Now we illustrate Pascal’s theorem.

Drawing 11.

(Circle O, 6 points on it, clockwise: Е, D, F, H, G, P. Intersections of diagonals of this hexagon (H,P) with (E, F) – point C, (E,G) with (D,H) – point A, (P,G) with (F,D) – point B. Constructed points A, B, C lie on a straight line).

Pascal’s theorem states that if six points Е, D, F, H, G, P lie on a circle, intersection points of the diagonals specified in drawing lie on a straight line. We consider A-transformations with the centers in intersection points of these diagonals: C, A, B. Note that A(P) = G, A(D) = F, B(E) = G, B(D) = H, C(P) = H, C(E) = F. We start construction with P. State the remained five points by means of compositions of A-transformations. G = A(P), E = B(A(P)), F = C(E) = (C(B(A(P))), D = A(F) = A(C(B(A(P)))), H = B(D) = B(A(C(B(A(P))))) and P = C(H) = C(B(A(C(B(A(P)))))). We designate map C*B*A as K. We have shown just now that K(K(P)) = Р or that K is involute at point P, i.e. С*В*А is involute at point P. It is insufficient told in the previous papers to conclude from here that K = C*B*A is involute at all points. (And it would be sufficient for proof of Pascal’s theorem). But we can formulate related to it the statement:

From the fact that A, B, C lie on a straight line follows that construction becomes closed or that points C, P, Н lie on a straight line. Because if A, B, C lie on a straight line, С*В*А is involutive and images of point P are connected by the relations described above.

The property (А*В*C)2 = е could be taken for definition of “straight line” that is to define so: three points A, B, C lie on a straight line only if the composition of A-transformations with the centers in them again is any A-transformation. But then we would face one difficulty: points lying on O would not fall under this definition. If one of these points lies on O it maps all points of O to itself and, certainly, the composition with participation of such point is not an involute. To bypass this difficulty, possibly it is necessary to develop idea that the point on O is not a point but an infinitesimal neighborhood. But this is a separate theme.

Modeling of projective space.

It is possible to formulate very simply correspondence between flat geometry of circles and geometry of projective space.

A. We term by "point" of projective space an inversion (real or imaginary) or a point of geometry of circles.
B. Term by "straight line" of projective space a population of inversions orthogonal to two given and if these inversions real then also their common points (if these points are).

C. Term by "plane" of projective space a population of inversions and, if the given inversion real – a population of points lying on it.

Explanations. 
1. I tell "orthogonal" instead of "commuting". Certainly, it is a speech freedom. Inversions are maps, not geometrical objects. 2. I treat here points as a special case of inversions. As definitions use only one property of inversions – commutativity (orthogonality), it is correct. After all it is possible to consider a point orthogonal to a circle on which it lies. Actually I think here of points as «very small circles». Such course of thought though is unusual, nevertheless has more than the general with a reality, than idea of a point as of something deprived of thickness, etc. as it is accepted usually.

Much as through three points always is possible to draw a circle, for three inversions always there is an inversion orthogonal to all of them. If inversion imaginary, it is not orthogonal to any point.

Straight line of a projective geometry is simply a bundle of circles (inversions). As we consider points a special case of circles, a pair of points also should set a bundle. It is an imaginary bundle with the centers in these points. A point and a circle also set an imaginary bundle, its centers: the given point and the image of this point under the given circle.

After these definitions we need to prove much to be convinced that defined so «points, straight lines and planes» behave as we have got used or as it should be in a projective geometry:
1. That the pair of "points" sets "straight line". It is equivalent to that two arbitrary inversions (or points) set a population of inversions and points orthogonal to certain two inversions (or to points) and these initial inversions are orthogonal to this "certain". 

2. That for any three inversions there is an inversion, orthogonal to them. It means that through any three points of projective space is possible to draw plane.

And we should prove some more similar statements. We make it in the second part of paper. For now we construct obvious space model which explain us what is an essence of the matter. I make this model by means of A-transformations in space. A-transformations in space are defined just as A-transformations on planes.

Let S is an orb in space, F – an arbitrary point out of an orb, X – an arbitrary point on orb S. We spend through X and F a straight line, it intersects S at point Y. That is the image of point X under A-transformation with the center at point F, (X is the image of point Y under this map, F(F(X)) = X for all X, i.e. F(X) – involutive map). Probably, that the straight line (Х,A) is tangent to orb S. In this case define F(X) = X. Investigate properties of motionless points under such maps. If F lies inside orb S, any straight line which is passing through F intersects an orb in two various points, therefore A-transformation with the center at F does not have motionless points. If F – outside of orb S motionless points of A-transformation with the center at F lie on the straight lines passing through F and tangent to S. Points of tangency of these straight lines are motionless points of A-transformation with the center at F. The straight lines which are passing through F and tangent to S form a cone (with top in F), and a line of tangency of the cone with the orb is a circle. (It follows from the fact that the described construction can be turned by any angle around the straight line which is passing through F and the center of the orb). Thus, we have the cap which has been put on an orb.

So, if F is out of an orb, motionless points of A-transformation with the center at F form a circle. It is visible from definition that A-transformation with the center at F in this case "turns out" orb S tangent to the motionless circle. There are some means to show that A-transformations map circles on an orb to circles and are inversions (real, if F lies outside of the orb and imaginary, if inside). I specify two. The first: just as A-transformations on plane are possible to expand to inversions, orthogonal to circle O, also in space it is possible to expand A-transformations to inversions of orbs, orthogonal to orb S. The second: use the theory of polars and poles in space.

A plane in which the circle motionless under A-transformation with the center at F laying outside of an orb lies is named as polar of point F. (The circle of tangency of a cone with top F and orbs S). Just as in flat case there is a property of reciprocity: if the point A lies on a polar of point B, point B also lies on a polar of a point of A. If four points lay on one plane their four polars are intersected at one point. There is an important feature of the theory of polars in space: each straight line can be put in correspondence to a straight line. That is: let straight line L is an intersection of two planes A and B. Consider poles of these planes and draw through these two points strait line M. That is the corresponded to L straight line. (Or we take two points on L, draw polars of these points; they intersect each other at some straight line which coincides with constructed in another way).

Certainly, it is possible to prove properties of A-transformations using neither the theory of inversions in space, nor the theory of polars and poles, and reducing matter to a series of problems on stereometry. We notice more, that A-transformations because of their visualization can be used for definition of inversions on an orb. If the center of A-transformation F lies outside of an orb, F sets the real inversion, tangent to a circle of motionless points of A-transformation with the center at F, if F inside the orb, F sets imaginary inversion which does not have motionless points.

As well as in a flat case we ask ourselves a question: when A-transformations commute. Both the course of reasoning and the outcome remind reasoning about A-transformations on plane. Let B and C – two commuting A-transformations. B(C(X) = C(B(X)). Let map with the center at point B has motionless points, i.e. B is out of orb S. Then C maps motionless points of map B again to motionless points of map of B. Since motionless points of this map are the circle, the centers of A-transformations mapping this circle to itself necessarily lie on the same plane as the circle. This plane is a polar of point of B. We have shown that B necessarily should lie on it. Sufficiency also is proved in the theory of polars: if C lays on polar B, A-transformations with the centers in these points commute with each other. Geometrically the commutation of maps with the centers in A and B means, that for any point X on orb S the pair of points X, B(X) under map C transforms to the pair points lying at one straight line with В (compare fig. 8).

Summarize. If B out of S, the centers of commuting with B maps lie on polar of B. This polar intersects orb S. The points which lie inside S are the centers of the A-transformations defining imaginary inversions, commuting with B, and the points lying outside define the real inversions commuting from B. If B is inside S, the centers of commuting with B A-transformations also lie on B. This polar has no the common points with S, all points it lie out of S and define the real inversions commuting with B. Note, that as in this case B sets imaginary inversion, only the real inversions commute with it. It corresponds to that there are no two imaginary inversions commuting with each other. At last, if B lies on S, we can define the map transforming all points of the orb to point В. With this map commute all A-transformations which centers lie on a plane, tangent to orb S at point of B. This plane is called as a polar of a point of B. All points except B set the real inversion commuting with the mapping of whole orb to point of B.
So, we have shown that the centers of the A-transformations commuting with еру given lie on one plane in 3-d space. "Straight line" by our definition is a population of A-transformations (or inversions on an orb) commuting with two given. The centers of A-transformations orthogonal to two given lie on intersection of planes where are the centers of A-transformations orthogonal to each of two given. Therefore, "straight line" in our definition is represented by intersection of two planes, i.e. by a straight line in 3-d space. The case when planes or straight lines are parallel to each other is treated similarly to flat case.

The fact of three-dimensional projective geometry that any three planes intersect at one point is equivalent in our model to that for any three circles there is one orthogonal to all of them (it is proved in application).

In conclusion of this theme we meet a lack. Some times (already in paper 2) I passed easily from study of circles on planes to study of circles on orb, but did not prove that it is possible to do it (e.g., proving the theorem of bundles). For the proof of legitimacy of this passage I produce mapping of an orb to a plane under which orb points are transformed to points of plane, circles transformed to circles and angles between circles remain intact. In other words, I establish isomorphism (see the end of paper 3) between the geometry of circles on orb and the geometry of circles on plane. This map is named a stereometric projection.

Let orb S lies on plane A and P is the most remote from A point of orb. (S is tangent to A at a point under P). Project orb S on plane A with the center of projection in P. Under this projection the image of point X of the orb is an intersection point of straight line (P,X) with plane А. At each point of a plane is mapped one point of the orb, there is no image for point P, the center of a projection. Then plane A is enlarged with "infinitely remote point” (the one where under the inversion the circle center is transformed to), and this infinitely is considered as an image of point P. A proof that under this projection circles are transformed to circles and angles between circles remain intact I don’t adduce here for the sake of economy of place. It can be discovered, for example, in the book of Hilbert and Cohn-Vossen «Geometry and Imagination».
Application. The basic properties of a bundle of circles.

Here are briefly and fully whenever possible the major properties of bundles important for the first part of the paper enumerated and proved. Some parts of paper repeat stated already in paper 2.

Bundles can be defined as a set of the circles "homogeneous" with two given. If two given circles A and B are intersected, this is a set of the circles which are passing through their intersection points. Such set is called as the real bundle of circles.

Drawing 12.

(Circles A and B intersected in two points, some circles which are passing through both points of their intersection).

Intersection points A and B are called as the bundle centers.

If two circles A and B tangent to each other, they set a bundle of circles tangent to them and each other. This bundle is named a "tangent" bundle.

Drawing 13.

(Circles A and B tangent to each other at point P, other circles, tangent to them in P)

Point of tangency A and B is named a bundle center.

If two circles A and B have no generic points they define an imaginary bundle. It is defined more complicatedly. We discover a pair of points P and Q such that A(P) = Q, B(P) = Q. Any circle X such that Х(P) =Q lies in the bundle defined by P and Q, otherwise, all circles of an imaginary bundle equally act at any pair of points P and Q. The imaginary inversions swapping points P and Q are also included in this bundle.
Drawing 14.

(Points P and Q and some circles swapping them)

Orthogonality and bundles.
Bundle of circles can be defined also using the property of orthogonality. The following fact lies at the heart of definition: if a circle orthogonal to any two circles from one bundle, it is orthogonal to all circles from this bundle. Because of it an arbitrary bundle of circles can be defined as a population of circles orthogonal to given A and B. If A and B are intersected, the imaginary bundle is orthogonal to them. If A and B tangent to each other, the tangent bundle is orthogonal to them, and if A and B have no generic points – the real bundle is orthogonal.

 Properties of bundles can be studied by means of inversion in one of the centers of a studied bundle. Under this inversion the center of a bundle is transformed to infinitely remote point. The real bundle under an inversion is transformed to a bundle of the straight lines which are passing through one point (this point is an image of the second center of the bundle under this inversion).

Drawing 15.

(A set of the straight lines intersected in one point)

The tangent bundle is mapped to a bundle of parallel straight lines.

Drawing 16.

(Some parallel straight lines)

The imaginary bundle is mapped to a set of concentric circles. Their common center is an image of the second center of the bundle under considered inversion.

Drawing 17.

(A set of concentric circles)

This bundle includes also imaginary inversions. These are inversions through these concentric circles with a composition with symmetry in the center of circles.

 Using the drawings it is easy to prove that for any three inversions A, B, C from one bundle, А*В*С is again an inversion from this bundle. 

If all circles of one bundle are orthogonal to all circles of the second, then these bundles are called as dual. The joint drawing of dual bundles reminds a grid of co-ordinates or force lines.

The centers of the circles lying in one bundle are arranged on a straight line (or coincide if these circles concentric). In the real bundle the centers of circles lie on a straight line equidistant from the bundle centers (intersection points of circles). In the tangent bundle the centers of circles lie on a straight line orthogonal to their common tangent and passing through the common tangency point. In the imaginary bundle the centers of circles lie on a straight line which is passing through the centers of a bundle. At that, points lying center between the centers of a bundle are the centers of the imaginary inversions of this bundle.

At modeling of the projective geometry we have to consider a point as a special case of circle. Then we consider that the pair of points sets the imaginary bundle with the centers in these points, point P and circle A set an imaginary bundle with centers P and A(P). If A contains P, then they define not imaginary but tangent bundle of circles, tangent to A at point P.

We consider all circles which are passing through the given point orthogonal to it. In this case we can define a bundle of circles orthogonal to two points – this is the bundle of circles passing through them. The bundle orthogonal to point P and circle A is the bundle of circles passing through P and orthogonal to A. This is equivalent to that circles pass through A and A(P).

In the first part we affirmed that for any three inversions (or points) there is an inversion commuting (orthogonal) with it. Let’s prove it. We consider at first the case when there are points among three given inversions. The circle which is passing through three points is orthogonal to them. To pair of points P and Q and inversions A the circle which is passing through P, Q, A(P) and A(Q) is orthogonal. To point P and inversions A and B the circle which is passing through P, A(P), B(P) is orthogonal. Let now A, B, C – inversions, real or imaginary. We want to show that there is an inversion (real or imaginary), commuting with them all or these circles are intersected at one point. In this case we say that this point is orthogonal to all of them.

Three inversions A, B, C form three bundles (A,B), (B,C), (A,C). If there is at least one imaginary bundle among them, we draw a circle through the centers of this bundle and orthogonal to the third inversion. It gives required inversion. If among these bundles is no imaginary one, then it means that all of inversions A, B, C are real (since imaginary inversions are included only into imaginary bundles), and all motionless circles of these inversions have common points (are intersected or tangent). We have considered already this case (paper 2, the theorem of bundles and construction of inversion by images of two points or by a triple of intersected circles).

Bundles, identity (А*В*C)2 = e and a continuity.
Let's notice one more property of bundles. Let we have two arbitrary circles A and B. Then A(B) and B(A) lie in the bundle determined by these circles. Also bisectrixes between A and B lie in this bundle. Thus, knowing two circles of a bundle, we can take many of other circles by means of inversion, their compositions and creating of bisectrixes. We consider more in detail a composition of inversions: A, B, A(B), B(A), B(A(B), A(B(A)), B(A(B(A))), …

It is convenient to pick out two transformations f1 = А*В and f2 = В*А (it is easy to see, that they are mutually inverse, their composition is identical motion: f1*f2 = (А*B)*(В*A) = А*(В*B)*А = е since A and B are involute, А*А = В*В = е) and to consider consecutive operations: 

f1(A), f1(f1(A)), … f1k (A) …

f2(B), f2(f2(B)), … f2k (B) …

We see that if the bundle is imaginary (A and B have no common points), outcomes of these compositions are tightened to the bundle centers. In the first series – to one, in the second – to another. f1 "drags" the circle (and all points of a plane) in one direction, f2 – in the opposite.

If the bundle (A,B) is tangent, both series are tightened to the unique center of the bundle (also are "drawn out" from there) but tightened in different directions. If (A,B) is the real bundle, circles are “turned”; it is possible at any K that f1k (A) = A, f2k (B) = В (all return on the places as under rotation of straight lines). If A and B are very close to each other, f1 = А*В and f2 = В*А both change everything not so strongly. Then f1(A) is close to A, sequentially applying f1 to A we have a smooth modification of a circle A. If we apply f2 to A we take a smooth modification A “in other side”. We can think of a bundle of circles as of outcome of smooth modification of circles. Especially obvious this is in case of the imaginary bundle: the circle gradually expands from one center of the bundle, grows to a straight line and decreases at the second center of the bundle.

Let's return to identity (А*В*C)2 = е; it states that a composition of three inversions from one bundle is involute. Actually not only involute but also there is an inversion through a circle from this bundle. If it is possible to take C applying inversions A and B (as we made earlier), the required easy to show algebraically. Moreover, if by means of compositions of inversions through certain circles P and Q it is possible to express A, B, C, the required also turns out very simply. (We consider this in paper 5). But it can be made not always just as there are incommensurable lengths. But, having selected P and Q close to each other enough, we can express arbitrary circles of the bundle in which lie P by means of inversions and Q arbitrary exactly. Further, by means of a standard passage to the limit it is possible to see that (А*В*C)2 = е, if A, B, C arbitrary close to inversions for which this identity takes place.

In this paper we speak about passages to the limit not the first time. We prove in a new fashion, by means of such passage, the well-known fact of geometry of circles. The proof is interesting to that synthesizes in itself the important topological and algebraic ideas. Let there are two circles A and B without common points. Let’s prove that any circle orthogonal to them passes through the centers of bundle (A, B). The proof:

Let C is a circle orthogonal to them. Then C is orthogonal also to A(B) and B(A(B)) and to all circles from described series since inversions through A and B leave C on a place and keep orthogonality of circles. All orthogonal circles are intersected. Hence, C is intersected with all circles of type A(B), B(A(B)), A(B(A)) … But these circles are tightened arbitrary close to the bundle centers. If C does not pass through any center of the bundle then some circle of the specified series is more close to the bundle than C, and consequently is not intersected with C. Bur it is impossible, since all these circles are orthogonal to C. Therefore C passes through both centers of a bundle. Q.E.D.

In the paper conclusion we prove that identity (А*В*C)2 = е is true only in two cases.

1. А, B, C are in one bundle.

2. All of A, B, C are orthogonal to each other.

For this purpose the simple lemma (prove it on your own) is required to us: if the composition of any two inversions P and Q transforms to itself any pair of points (i.e. swaps them or leaves both motionless), this points are the centers of the bundle formed by inversions P and Q.

Now we prove that if (А*В*C)2 = е, A maps to themselves the centers of the bundle formed by B and C. Reduce composition A(B(C(A(B(C())))) if X is one of the centers of bundle (B,C). A(B(C(the centers of bundle (B,C)))) = А(the centers of bundle (B,C)) (since B and C map to themselves the centers of the bundle formed by them). We apply once again А*В*С: A(B(C(A(the centers of bundle (B,C)))) = A(the centers of bundle (B,C)) since under supposition А*В*С applied twice returns all points on the places, including the bundle centers (B,C). We apply inversion A to left-hand and right-hand sides and take B(C(A(the centers of bundle (B,C))) = А(the centers of bundle (B,C)). Hence, В*С maps pair of points A(the centers of bundle (B,C)) to the same pair. On the lemma from here follows that A(the centers of bundle (B,C)) = (the centers of bundle (B,C)). It also means that A maps the bundle centers (B,C) to themselves. Having considered all variants we see, that it means that either A lies in a bundle (B,C) or A is orthogonal to B and С. In the first case we have the required, this is the case 1. In the second – A commutes with B and C. Using this we have: (А*В*C)2 = А*В*С*А*В*С = В*С*А*А*В*С = В*С*В*С = е (we use also that А*А=е). But В*С*В*С = е is equivalent to that В*С = С*В (having multiplied both side by С*B). Therefore, either B and C commute among themselves, or are orthogonal. Q.E.D.

Case when B and C are tangent I suggest considering by one’s own.

Paper 5.
Calculus of symmetries.

The paper summary.

The paper begins from slightly abstract reasoning which helps us to study compositions of symmetries. Then compositions of symmetries in straight lines on a plane are studied, and is proved that any such composition is either turn or parallel translation or a composition of reflection in a point and a straight line.

Before studying composition of inversions through circle «the abstract group of motions» is defined. Further it is studied in what cases a composition of four inversions can be reduced to a composition of two inversions and is proved that the composition of any number of inversions is reduced to a composition of four inversions (real or imaginary).

Then some properties of symmetries in the Euclidean space are studied. In the paper conclusion symmetry in two orthogonal circles (biplet symmetry) is defined and studied, its likeness with symmetries in space and its connection with the harmonious ration is shown.

All enumerated themes so that to show unity of methods and ideas and application of the important concepts of the theory of groups.

The conjugated motions.

I begin with the abstract reasoning. However, one of the purposes of this paper is to show that seeming abstract reasoning and symbolical notation help to understand geometry. 

We made no distinction between an inversion and the circle through which it acts, between a straight line and a reflection in this straight line. We designated their by same character. From a context it became clear – what is speech about. Meanwhile they are absolutely different things. It is important for us that symmetry in line or circle is univalently determined by indications of the straight line or the circle. In other words, these symmetries are univalently determined by set of the motionless points.

Let we have two circles A and B (or straight lines if we study geometry of the usual, Euclidean plane, not geometry of circles). We can consider a composition of these symmetries А*В. It is new motion of a plane. It is not symmetry anymore (generally). But, as symmetries in A and B leaves invariable some properties of figures, their composition also does not change these properties. We can consider also A(B) and B(A). They are not motion anymore. They are figures (in our case – circles or straight lines). A(B) – outcome of an operation of symmetry in A at B, in other words the circle symmetrical with B in A. This circle itself sets some symmetry. Whether is it possible to express inversion which sets A(B) through a composition of inversions through A and B? How it is possible, if is?

Let's designate A(B) = С. C sets some new symmetry. What does «two symmetries coincide» mean? Or, more the general problem: «two motions, for example C and С1, coincide»? It means that they equally act at all points of a plane, i.e. for all points of a plane C(X) = С1(X). We consider at first a case when A and B are straight lines.

Drawing 1.

(Straight lines A and B, symmetric to B in A straight line С = А(B). Point X, symmetric to it in A point A(X), symmetric to X in C, point C(X), symmetric A(X) in B point B(A(X)))
We wish to express C(X), realizing symmetries in A and B. Symmetry in A transforms A(B) = С again to B, and pair of points X, C(X) symmetric in С = А(B) – to pair of points symmetric in A(A(B)) =В (the last is because symmetry keeps angles and distances; if figures are symmetric in some straight line M, their images under the symmetry in any straight line L are symmetric in L (M)).

Therefore A(B(A(X)) = C(X). (A transforms pair of points A(X), (B(A(X)) symmetric in B to pair of points symmetric in A(B) = С, A(A(X)) = Х, A(B(A(X)). Q.E.D. 
We have expressed C(X) through compositions A and B: С=А*В*А. If A is involute А*А=е or А-1=А (inverse to A motion coincides with A). Therefore we can note С=А*В*А-1.

Let's complicate our problem. Let now A is not a reflection in a line, but an arbitrary motion of a plane, an arbitrary composition of symmetries. A somehow operates on straight line B. Let A(B) = С, where C – some other straight line. Therefore C sets certain symmetry. How to express this symmetry by means of composition of A and symmetry in B?

The answer is the same: С=А*В*А-1. We prove. Let X is an arbitrary point. The pair of points X, C(X) is symmetric in straight line C. Consider the to pair of points А-1(X), A-1(C(X)). It is symmetric in А-1(C) = A-1(A(B)) = В. Therefore B(А-1(X)) = A-1(C(X)). We act on both sides of equality with motion A and take: A(B(А-1(X)) = С(X). Q.E.D.

Let's apply our calculations to the elementary case: when straight line B acts at itself. B(B) = В, В*В*В-1 = В as well as it should be.

We have considered the case when A and B straight lines. If they are circles, reasoning is valid. 

Drawing 2.

(Two circles A and B – it is more convenient to draw not intersected circles: circle С = А (B); points X, C(X), A(X), B(A(X)))
Indeed, an inversion through a circle also transforms points which are symmetric in a circle to points symmetric in the image of this circle under the inversion. Drawings of symmetries in straight lines are more obvious, therefore I and have begun with them.

Now we make definition of the conjugated motions. Let A and B two motions (not necessarily symmetry). Motion А*В*А-1 is called as motion conjugated with B. Just we saw a role of the conjugated motions for a special case when B is a reflection in a line or an inversion.

Composition of symmetries on a plane.

Before investigation of a composition of inversions we consider a composition of symmetries in straight lines on a plane. We remind told in paper 2:

1. If straight lines A and B are intersected, the composition of symmetries in them is the rotation by the doubled angle between them. The rotation center is the intersection point of A and B.
2. If straight lines A and B are parallel, the composition of symmetries in them is the parallel translation on the doubled distance between them in the direction perpendicular to these straight lines. (It reminds rotation with the center at infinitively remote point).

Let's make some simple observations on point symmetries. Symmetry in any point Т is outcome of a composition of symmetries in two perpendicular straight lines A and B, intersected in this point.

Drawing 3.

(Two perpendicular straight lines A and B, point of their intersection T, points X, A(X), A(B(A(X)) =Т (X))

В*А = А*В = Т
A composition of two point symmetries in two arbitrary points P and Q as it has been shown in paper 2 is a parallel translation on the doubled vector with the ends in P and Q (the vector beginning is in the center of the first symmetry, the end – in the center of the second). All parallel translations commute among themselves. Therefore we can note identity for point symmetries: let there are four arbitrary points P, Q, S, T. Then: P*Q*S*T = S*T*P*Q, because P*Q and S*T are translations and it is possible to permute them.
A reflection in a line and a reflection in a point commute only in the case when the point lies on the straight line. In this case outcome of a composition is a reflection in the perpendicular to the straight line at the given point. It can be deduced from fig. 3. А*В=Т, hence А = Т*В. If two symmetries (it is not important in a point or a straight line) commute, their composition is involute. Let X and F are two arbitrary commuting symmetries. We designate H*F = F*H as G. G*G = H*F*H*F = H*F*F*H (commutability) = Н*Н = е (identical motion). As it was required, G*G = e in other words, G is involute. The opposite is also true: if a composition of two symmetries is an involute, given pair of symmetries commutes among themselves. I leave the proof on one’s own.

Composition of symmetries in four straight lines.

Now we want to show that a composition of symmetries in any four straight lines A, B, C, D is equal to a composition of symmetries in some two straight lines (that is, always there is a turn or parallel translation).

Let's designate a composition of symmetries in A, B, C, D as H. H = D*C*B*A. Let’s “insert” into this formula symmetry in some straight line F: H = D*C*B*A = D*C*(F*F)*B*A = (D*C*F)*(F*B*A). These equalities are true whatever F is, they simply follow the fact that we can place brackets anywhere, in other words, from associativity. If D*C*F and F*B*A both are symmetries in certain straight lines we’ll get the demanded. Therefore it is enough for the proof to discover such F, that both specified compositions from three symmetries would become reflections in line. In paper 2 we already spoke about “bundles of straight lines”. Let’s consider a straight line connecting bundles (D,C) and (B,A) and that will be the required F. Let straight lines B, A intersect each other at point P and straight lines D, C – at point Q. We draw through these points straight line F. Then all of A, B, F pass through P and on proved earlier in paper 2 F*B*A is a symmetry in straight line L which is passing through P, and D*C*F – symmetry in straight line M which is passing through Q. So, in this case: D*C*B*A = (D*C*F) * (F*B*A) = М*L where M and L – straight lines. Q.E.D.

Drawing 4.

(Straight lines A, B, intersected at point P, straight lines C, D, intersected at point Q, straight line F which is passing through P and Q, straight lines L and М; the angle between L and F is equal to the angle between A and B, the angle between F and M is equal to the angle between C and D).

Let now straight lines A and B are not intersected but parallel. We choose from this bundle of parallels a straight line which is passing through Q, point of intersection of straight lines C and D.

Drawing 5

(Parallel straight lines A and B, straight lines C and D, and straight line F which is passing through their intersection point)

Straight line F is the required one.
If C and D are also not intersected, В*А and C*D are parallel translations, therefore (D*C)*(B*A) is a composition of two parallel translations, composition of two translations is again parallel translation. And any parallel translation could be presented a composition of two line symmetries.

We can explain drawing 4 and the proof more geometrically: composition В*А is a turn with a center at intersection point B and A, therefore if the angle between В1 and A1 is equal to the angle between B and A (and in the same direction), both В1 and are A1 intersected at same point P as B and A, then В*А = В1*A1. It means that we can rotate B and A around P, and thus the composition of symmetries in these straight lines not vary. Let’s make the rotation so that B passes through Q, intersection point of C and D. Similarly rotate straight lines C and D so that C has taken a place of this straight line. In outcome in expression D*C*B*A two middle members are reduced, since C and B are turned to the same straight line.

So, it is proved, that the composition of four line symmetries can be reduced to two line symmetries. From here follows that composition of any number of line symmetries can be reduced no more than to three symmetries. Indeed, let there are five line symmetries and their composition: А*В*С*D*E = N. Composition of the first four is reduced to two. So, Н = L*M*E where L*M = А*В*С*D, as it was required. Similarly we act for composition of any number of line symmetries.

Composition of symmetries in three straight lines.

Let's consider now a composition of three line symmetries С*В*А = Н.
Drawing 6.

(Straight lines C and B intersected at point P, straight line A, a perpendicular from point P to A)

Let's show that it is possible to reduce Н to a composition of reflection in a point and in a straight line. The proof is similarly to carried for fig. 4. We rotate straight lines C and B until straight line B becomes perpendicular to straight line A (i.e. not coincide with a perpendicular dropped from P to A). Or, differently, we discover straight line L from bundle of straight lines (B,C) perpendicular to A. Н = С*В*А = С*В*L*L*A = (C*B*L)*(L*A). The left bracket is the reflection in the line passing through P, and the right bracket – the reflection in the point of intersection L and A.

If C and B are parallel, the proof doesn’t take place, since there is no straight line among lines parallel to C and B and perpendicular to A (or all of them are perpendicular to it). Then we rotate straight lines A and B about their intersection point Q until B becomes perpendicular to C. Or insert straight line M: H = C*B*A = (C*M)*(M*B*A) so that M is perpendicular to C and passes through Q. Thereby Н is again reduced to composition of reflections in the point and in the straight line. If A and B are also parallel, all three straight lines A, B, C are parallel among themselves and С*В*А is line symmetry as well as when A, B, C all pass through one point. Q.E.D.

So, the composition of three line symmetries is reduced to a composition of reflection in a point and in a straight line. Let’s study this composition. Designate the point of the symmetry as A and the straight line of the symmetry as L.

Drawing 7.

(Straight line L, point A, straight line M which is passing through A and perpendicular to L. Points X, AX), L(A(X)) and B – the point of intersection of M and L).

We see that all points on M are translated under the influence of А*L on the doubled distance between A and L. Other points are also translated by this distance in a direction along M (from A to L) and are symmetrically reflected in M. I.e. Н = А*L is a composition of the translation on the doubled vector with the beginning at A and the end at B and the symmetry in M. This can be got also on the basis of formal transformation: L = B*M, H = A*L = A*(B*M) = (A*B)*M. There is a translation in the brackets (a composition of two point symmetries) and then line symmetry acts, as well as it has been told.

Let's prove now smart identity about three arbitrary line symmetries: A, B, C. Namely: (А*В*C)2 * (В*С*A)2 = (В*С*A)2 * (A*B*C)2. Proof: for any line symmetries (А*В*C)2 – parallel translation (I suggest proving on one’s own, using above reasoning). So, translation (А*В*C)2 commutes with (В*С*A) 2. Q.E.D.

During investigation of compositions of four and three line symmetries we have proved that any composition of line symmetries can be reduced to a composition of two symmetries (in straight lines or points, or this composition is symmetry itself. Differently: group of motions of a plane is bi-involutive (i.e. is representable by a composition of no more than two involute elements.)
Definition of abstract group of motions.

Let we have a set of maps (functions, motions) which act at a set of objects. Insignificant what objects: points, direct, circles, numbers. If:

1. for any map F there is an inverse to it map Н, such that F(H(X)) = X for all objects Х (Н is designated as F-1);
2. if two maps A and B are included into this set, their composition А*В=С also is included into this set;
3. there is a map Е, such that Е(X) = Х for all Х (we can do nothing; this "doing-nothing", "zero" is called the identical motion),

then the set of maps is called group of maps (motions). It is possible to deduce item 3 from 2 and 1 (composition of a map and inverse to it just gives the identical motion). Notice the property of associativity of maps A*(В*C) = (А*B)*С which means that we can open the brackets arbitrary. This property is inherent to all maps, we actively used it studying the geometry of circles, but commutability takes place only in exceptional cases.

It is possible to name in what we were engaged in this paper «study of group of maps of a plane». Not arbitrary maps but such which keep distances between points, angles between straight lines, etc. Such maps are named plane motions. Now we study group of transformations of a plane generated by inversions.

Composition of five inversions.

In this section we want to show that a composition of five inversions can be reduced to a composition of three inversions (in accordance with this a composition of six inversions can be reduced to a composition of four inversions). Our reasoning is largely similar to reasoning about fig. 4. Let we have composition of five inversions H = A*B*C*D*E. We take inversions (circle) D and Е and rotate them so that D*E should remain invariable and D accept such position that composition A*B*C*D should become "convenient", reduced to two inversions. Or “we insert into formula” H = A*B*C*D*E inversion F: X = (A*B*C*F) * (F*D*E) so that the left bracket is reduced to two inversions, and right – to one. In order to select this F we discover when a composition of four inversions A*B*C*D is reduced to a composition of two inversions.

Pair of inversions A and B sets some bundle (or, using paper 4, the straight line in projective space). Pair of inversions C and D sets another bundle (anther straight line in projective space). If these bundles are combinable (straight lines are intersected in projective space), that is an inversion I lying in both of them exists, then we insert inversion I into composition A*B*C*D. A*B*C*D = А*В * (I*I) * C*D = (А*В*I)*(I*C*D). Since all three inversions in the left bracket lie in one bundle, the left bracket is an inversion (real or imaginary). So for the right bracket. (Compare with fig. 4). If both of bundles (A,B) and (C,D) are real, their combinability means simply that intersection points of A and B lie on one circle with intersection of points C and D.

Now we consider composition of five inversions H = A*B*C*D*E. To reduce it to three inversions, it is enough to discover inversion F, such that F lies in bundle (D,E) and (A,B) is combinable with (C,F). In this case X = (A*B*C*F)*(F*D*E) is reduced to composition of three inversions: the left bracket give, as it has been shown, two, and the right bracket – one inversion. Using the model of paper 4 it becomes absolutely obvious: inversions A, B, C – points in projective space, they lie in some plane. We discover intersection of this plane with the straight line of projective space which is passing through D and Е. Obtained point F also determines this inversion. It is possible to manage without paper 4 model. But the part of paper 4, where is spoken about properties of bundles and proved that for any three inversions there is an inversion commuting with all them, is required. We discover convenient criterion of that the pair of bundles is combinable.

As it was shown in papers 2 and 4, if an inversion commutes with any two inversions it commutes also with all inversions from a bundle generated by them. So, let bundles (A,B) and (C,D) are combinable. We want to show that there is an inversion commuting with all of four inversions A, B, C, D. Let F connects these bundles. Then the bundle (A,F) coincides with bundle (A,B), bundle (C,F) – with bundle (C,D). For three inversions A, C, F there is an inversion commuting with them. We designate it as I. I commutes with A and F, therefore I commutes and with B because B lies in bundle (A,F), similar I commutes with D since I commutes with C and F, and D lies in bundle (C,F). Q.E.D.

Let's prove now the converse: if for inversions A, B, C, D there is an inversion I commuting with all them, bundles (A,B) and (C,D) are combinable (here it is useful to recollect different proofs of the theorem of bundles of paper 2 or to return to paper 4 model). In this case A, B, C, D be represented by points on one plane and inversion connecting them be represented by a intersection point of straight lines (A,B) and (C,D)). And now we prove required by means of bundle definition through commuting inversions.

The bundle (A,B) is set by a pair of the inversions commuting with A and B. Let one these of inversions – I, commuting with A, B, C, D (on a condition it exists), the second – H. The bundle (C,D) is set by a pair of the inversions commuting with C and D; let one of them is I which is commuting with A, B, C, D and the second – G. We have three inversions I, H, G. There is an inversion F commuting with all of them. That is which connects bundles (A,B) and (C,D). Indeed, F commutes with I and X and, consequently, lies in bundle (A,B). F commutes with I and G and, consequently, lies in bundle (C,D). Q.E.D. I leave on reader’s own to study the case when I, H, G are intersected at one point. 

So, we have proved that the composition of four inversions can be reduced to two in the case when there is an inversion commuting with all initial four inversions. We return to our initial composition of five inversions: H = A*B*C*D*E. Let inversion I commutes with A, B, С. I In bundle (D, E) must be an inversion F orthogonal to (commuting with). Again, most easier to prove it having defined a bundle (D,E) through pair of inversions with which all inversions of a bundle (D,E) commute. Required inversion should commute with this pair and I. As always there is an inversion commuting with three data, such inversion F exists. As it was required (I suggest analyzing the case when considered circles are intersected at one point without assistance).

Now we apply become standard reasoning: H = A*B*C*D*E = (A*B*C*F) * (F*D*E), where F is the circle which existence we have just proved. Since I commutes with A, B, C, F, the left bracket is reduced to two combinable inversions (A,B) and (C,F). The right bracket consists of three inversions of one bundle; therefore it is reduced to one inversion. Hence, all expression is reduced to 2+1=3 inversions, as it was required. From here, certainly, follows, that a composition of six inversions is reduced to a composition of four ones (the composition of first five on proved is reduced to three and one more, the last, inversion is added, all turns out four inversions).

About symmetries in space.

In this paper I alternate an account of geometry of circles with the Euclidean planimetry and stereometry in order to show obviously the unity of methods of study of these different cases. Besides, the facts of geometry of circles suggest ideas for stereometry and on the contrary.

In the Euclidean space we have symmetries:

1. in a point,
2. in a straight line,
3. in a plane.

Let's make simple observations:

The symmetries set by perpendicular planes commute. Their composition is a reflection in a line at which these planes are intersected. Inverse is also true: if symmetries in planes commute, the planes are perpendicular. If all of three planes A, B, C are perpendicular among themselves, all of them commute among themselves and composition А*В*С = Т, where Т is a symmetry in their intersection point. If two straight lines are perpendicular, composition of symmetries in them is a reflection in the line passing through the point of their intersection and orthogonal to both of them. If all of straight lines A, B, C are perpendicular to each other, a composition of three symmetries in them is the identical motion: А*В*С = е.
We saw that by means of composition of three symmetries in planes is possible to get point and line symmetries. But it is impossible by means of compositions of line symmetries to get neither reflection at point, nor symmetry in plane. The fact is that reflections at points or planes change figure orientation, whereas symmetries in straight lines doesn’t. A composition of two point symmetries is a parallel translation of space, a composition of two symmetries in planes is a rotation by the doubled angle between them around the straight line of their intersection (and if planes are not intersected – parallel translation).

The composition of two symmetries in straight lines is more complicated. It is screw motion. It consists of rotation around some axis and parallel translation along this axis. If two straight lines are intersected at a point, the composition is only rotation, and if they are parallel – only parallel translation. By methods very similar from the proof of similar fact for geometry of circles it is possible to prove that a composition of 5 symmetries in planes is a composition of three symmetries in some other planes. We prove that a composition of three line symmetries is reduced to a composition in two other line symmetries. From here follows, that a composition of two screw motions is again screw motion.

1. For any two straight lines A and B there is the straight line C, perpendicular to both of them. (It is the well-known fact of stereometry. I quote here its proof because it very elegantly uses ideas of continuity). Let point P is moving on straight line A, and point Q – on straight line B. We measure distance |P,Q|. Obviously this distance can be arbitrary large. But it cannot be arbitrary small; it cannot be less zero in any way. Under the known theorem of continuity at some P and Q this distance reaches a minimum. We draw through these points straight line (P, Q). It is the required one! Because the perpendicular from point P on straight line B realizes a shortest distance from P to B. If the minimum |P,Q| = 0, then Р=Q, therefore A and B are intersected and, consequently, lie in one plane. The required straight line passes through a point of their intersection and is orthogonal to the plane in which they lie (and certainly to A and B).

2. If for straight lines A, B, C there is perpendicular to all of them straight line Н, then А*В*С is involute and line symmetry in some straight line D, also perpendicular to H. Proof is similar to flat case of three straight lines intersected at one point. Let D – some line symmetry. Equality А*В*С = D is equivalent to А*B = D*C. We choose D on the same distance from C as A from B and forming with C the same angle and in the same direction as the angle between A and B, then we get required А*В = D*C (since both left and right sides of the equality determine the same screw motion along the same axis). Having multiplied by C we get required А*В*С = D. Q.E.D.

3. Let now A, B, C – three arbitrary straight lines. Let Н = А*В*С. Now we insert F, such that А*В*F and F*C are involute. Let straight line M is perpendicular to A and B (on proved in paper 1 it exists). Also straight line F orthogonal to M and C exists. That is the required line. H = (A*B*F) * (F*C). The left bracket is line symmetry since A, B, F - are perpendicular to one straight line M. Right bracket is line symmetry since F is perpendicular to C. Q.E.D.

I leave on reader’s own the cases of a composition of symmetries in a plane and in a point lying on it, in a plane and in a straight line lying on it, in a plane and in perpendicular to it straight line, in a straight line and in a lying on it. It is not so complicated to prove that any composition of symmetries in three-dimensional space can be reduced to a composition of symmetries in two objects (a plane, a straight line or a point). In other words, the group of motions of three-dimensional space is bi-involute. The group of motions of n-dimensional Euclidean spaces also bi-involute: a composition of any number of symmetries is reduced to two symmetries in hyperplanes of different dimensions (I consider a point as a hyperplane of dimension 0). The proof of this fact is more complicated, I don’t produce it here since it withdraws us aside.

Biplet symmetry or symmetry in pair of points.

On the usual Euclidean plane a composition of symmetries in two perpendicular straight lines is point symmetry. But what is an outcome of a composition of two orthogonal inversions? We begin with the case when both these inversions are real. Let there are two orthogonal circles A and B intersected at points P and Q.

Drawing 8.

(Orthogonal circles A and B intersected at points P and Q, point X, points AX), (B(A(X)), A(B(A(X))))

Let's designate outcome of compositions A and В as h(X). h = A*B = B*A. h(X) = A(B(X)) = B(A(X)). It is easy to see that h(h(X)) = X (h is involute).

Really, h*h = А*В*А*В = А*В*В*А = е since A and B under the condition commute (are orthogonal). It is obvious, that h leaves motionless pair of points P and Q (since it is leaved motionless by A and B). Now we want to show that h is similarly to point symmetry, i.e. depends only on points P and Q. For any other circles C and D orthogonal to each other and intersected at points P and Q the composition of inversions through them is the same, just as a composition of symmetries in any pair of perpendicular straight lines is a reflection in their intersection point.

For this purpose we realize inversion I with the center at one of intersection points of A and B, e.g. in Q. Q is transformed to the infinitely remote point, the circles which are passing through P and Q – to straight lines, and map X – to symmetry in I(P). We note all it formally, using reasons from the beginning of the paper about the conjugated elements:

h = A*B = I-1*I*A*B*I-1*I = I-1*(I*A*I-1)*(I*BI-1)*I

(I-1=I, since I is an inversion, but I write in such aspect to show a role of elements of type STS-1, i.e. the conjugated elements). The left bracket in the last, a little bulky expression, is the outcome of act of I at A, i.e. I(A) is a straight line; also for the right bracket, I (B) is a straight line. Since inversion keeps angles, I(A) and I(B) are orthogonal straight lines. These straight lines are intersected at point I(P). A composition of symmetries in them is the point symmetry in I(P). So, to discover an image of an arbitrary point X under map X there is enough: 

1. to discover I(X) and I(P),
2. to make a symmetry of point I(X) in I(P),
3. to invert outcome through I.

These operations really don’t depend from A and B as the composition I(A)*I(B) doesn’t depend from I(A) and I(B) but only from the point of their intersection. Q.E.D. Also from the stated follows that under h there are no motionless points except of P and Q.

It is possible to tell that inversion I determines isomorphism between the group generated by inversions of circles passing through P and Q and the group generated by symmetries of straight lines passing through I(P). Under this isomorphism the arbitrary circle S which is passing through P and Q is transformed to I(S) or to I*S*I-1.

In the paper beginning the definition of the conjugated motions has already been made. Later the definition of "group of motions" has been made. In an arbitrary group of motions the conjugated elements are defined in exactly the same way: let D and C – arbitrary motions (elements of group of motions). Then element С*D*C-1 is called as conjugated with D element. It is very important that the element conjugated to product of two elements is equal to product of the conjugated elements (in all cases conjugation should be made by one element of groups of motions). Sounds a little mysteriously but noted and proved trivially.
(С*D1*C-1)*(C*D2*C-1) = C*D1*D2*C-1. In two brackets at the left there are the elements conjugated with D1 and D2, on the right – the element conjugated with D1*D2; for the proof it is enough to reduce C-1*C in the middle of the left part of equality. From this follows that conjugation by any element, for example C, sets an isomorphism of group of motions to itself (see definition of isomorphism in paper 3) (such isomorphism is called as "automorphism" since the group of motions is mapped to itself instead of something another). In other words if we have a set of motions D1, D2... DK and they are connected by any identities (someone commutes with someone, any element is cubed equal to the identical motion, etc.), the conjugated elements: C*D1*C-1, C*D2*C-1... C*DK*C-1 are connected precisely by the same identities.

Let's return to the geometry of circles. I name symmetry in pair of points P and Q (determined as a composition of inversions through two orthogonal circles intersected at P and Q) as biplet symmetry, the pair of points P and Q – as biplet, and points P and Q – as extremities of the biplet. How to construct an image of point X under symmetry in biplet with extremities P and Q?
Drawing 9.

(Point X, points P and Q, circle A which is passing through X, P and Q; circle B orthogonal to A and passing through points P and Q).

h(X) = B(A(X)) = D(B(X) (since A contains X, A(X)=X). In order to construct h(X) it is possible to discover the center of B – to draw tangential to A straight lines at points P and Q. They are intersected at the center of B (orthogonal to A). And then draw a straight line through this center and X. The second intersection point of this straight line with circle A gives point h(X). (Compare with A-transformations in paper 4.)
Drawing 10.

(Circle A, points X, P and Q on it, tangential straight lines to A at points P and Q, the point of their intersection, the straight line which is passing through this point and X, an intersection point of this straight line with A).

It is possible to discover h(X) in another way. We draw through point X a circle orthogonal to A and B. Its second intersection point with circle A is the required h(X).

Drawing 11.

(Circles A, B, points P, Q, X, circle C orthogonal to A and B and passing through point X, its second intersection with A point – h(X))

It is clear from drawing 11 that if to consider the symmetry set by biplet with the extremities X, h(X), it maps point P to point Q (and, certainly, point Q to point P). It is also clear from drawing 10 and paper 4. So, symmetry in pair of points (biplet) possesses remarkable property: if biplet maps point X to Y, biplet with the extremities X, Y interchanges the positions of the extremities of mapping biplet. If to designate biplet with extremities P and Q as (Р,Q) and its action on X as (Р,Q)(X), then it is possible to write so:

(P,Q)(X) = Y is equivalent to that (X,Y)(P) = Q. We note more properties biplet symmetry:

1. An image of point X lies on the circle which is passing through X and extremities of biplet.

2. X and its image lie on this circle on different sides from the extremities of biplet.

Let's consider more the special case when points X, P, Q lie on one straight line. In this case the method of construction specified for fig. 10 does not work (tangents couldn’t be drawn). But it is possible to use the method of fig. 11. Also, it is easy possible to calculate all necessary distances.

Drawing 12.

(Straight line A, points P, Q, X on it, circle B, its center O lying on straight line A in the middle of segment [P,Q]; point B(X) lying on other from X side of this segment and is closer to that edge of a segment as X)
Since the center of a circle orthogonal to straight line necessarily lies on this straight line, in the middle between intersection points the radius of this circle is equal to |O,P| = |P,Q| / 2. Under the inversion through B X is mapped to point B(X) such that |O,X|*|O,B(X)| = |O,P|*|O,P|. The four of points (or two pairs of points (Х,B(X)=h(X)) and (Р,Q) lying on one straight line and connected thus are called as harmonious. Moreover: the extremities of the biplet, a point and its image at symmetry in the biplet are in the harmonious ration and don’t lie on one straight line (but as it has been shown they always lie on one circle). Compare it with the definition of the harmonious ration which has appeared in paper 3 by reviewing of four mutually tangent circles.

Let's return to reviewing of three mutually tangent circles. We change a little labels in comparison with fig. 11.

Drawing 12.

(Three mutually orthogonal circles A, B, C; points of intersection: A and B – P, Q; A and C – X, Y; B and C – F, T)

The six of intersection points of three mutually orthogonal circles X, Y, P, Q, F, T possesses a number of remarkable properties. For example, it is possible to draw through these points four circles tangent to each other (we prove this in the following papers; compare paper 3), so that tangency points will be in these six points. Now we note properties biplet symmetries. We divide six points into three biplet so that intersection points of two circles would be the extremities of one biplet: (Х,Y), (P,Q), (F,T). Each of these biplet swap the extremities of two others. We designate the first biplet as f1, the second – as f2, the third – as f3. 

By definition: f1=A*C, f2=A*B, f3=B*C. f1*f2 = (A*C)*(A*B) = A*A*C*B = C*B = f3 (we used the commutability of A, C, B among themselves). Similarly f1*f3=f2, f3*f2=f1. Also it is easy to show, that all of biplets f1, f2, f3 commute among themselves and that f1*f2*f3 = e. Similar relations connect symmetries in three mutually perpendicular planes and straight lines at which these planes are intersected. A composition of symmetries in three orthogonal planes in stereometry of Euclid is point symmetry. And in circle geometry А*В*С = I, where I is an imaginary inversion orthogonal to all of them (see paper 3, the theorem of four orthogonal inversions). I swaps the extremities of all biplets I(X) = Y, I(P) = Q, I(F) = T. We use this fact to meet a lack.

At the very beginning of reasoning about biplets considering a composition of commuting circles A and B, I have considered the case, when they both are real. Therefore, the intersection points (the extremities biplet) appeared. Let now one of circles is imaginary (two imaginary circles cannot commute). We designate it as I, and real as A. Draw two real circles B and C commuting with A and I. As it has been told, А*В*С = I. Having multiplied by A at the left, we get В*С = А*I. That is the composition of the commuting inversions, one of which – imaginary – coincides with the composition of two real inversions B and C. That was required; therefore we do not have necessity to consider specially the case of a composition of commuting imaginary and real inversions.

In following papers I hope to study in detail calculus of biplet symmetries and to show how with its help to define complex numbers and even the abstract mathematical structure named a field and as this calculus helps to study helical motions.

Paper 6.

Obvious theorems and constructions. (Returning to old themes.)
The paper summary.

In this paper the themes appearing in the previous papers are considered. At first different methods of construction of a circle orthogonal to three given are specified and theorems about circles constructed on intersection points of three given circles are proved. Then the statement formulated in paper 3, that the map of a plane mapping circles to circles and motionless at three points is either an inversion or identical motion, is proved. At last, new properties of bisectrixes of circles are studied, and I come back to Appolonius’s problem.

Circle orthogonal to three given.

In papers 4 and 5 we reused the fact that for three inversions A, B, C there is one commuting with them all. For the proof we used the theorem of bundles (paper 2). Now I repeat it shortly, limiting myself to the case when all three inversions are real, i.e. have a motionless circle.

Let, for example, A is intersected with B but both of them have no generic points from C. Let’s take an arbitrary point X and construct its image I(X), where I is a map commuting with А B, C.

Drawing 1.

(Two intersected circles A and B; circle C without common points with; point X; circle D1 passing through X and intersection points of A and B, circle D2 from bundle (A,C) passing through X; circle D3 from a bundle (C,B) passing through X; the point of intersection of D1, D2, D3 – Y = I(X))

Under the theorem of bundles all of D1, D2, D3 pass through some point Y which is the image of X under the inversion commuting with inversions through A, B, C. But how could one draw this inversion? More precisely, how could one discover its motionless circle (existing if inversion real)? Without this the inversion seems too abstract. The solution depends on a relative positioning of circles A, B, C.
1. Circles A, B, C are not intersected.

Drawing 2.

(Three circles A, B, C without common points; points Р1, Р2 – the centers of bundle (A,B); Q1, Q2 – the centers of bundle (A,C); Н1, Н2 – the centers of bundle (B,С))
Let's prove, that all six centers of bundles (formed by initial circles A, B, C) lie on one circle I, which is orthogonal to (commuting with) A, B, C. Draw the circle I through two centers of one bundle, for example, (A,B) – Р1 and Р2 and through one of the bundle centers (A,C), Q1. We are able to do it, since it is always possible to draw a circle through three points. Inasmuch as I passes through the pair of points P1 and P2 conjugated through A, I it is orthogonal to A, as Р1 and Р2 are conjugated also through B. Let’s prove that I is orthogonal also to C. Since I passes through Q1 and A(Q1) = Q2, I passes also through Q2. But as I passes through pair of conjugated through C points Q1 and Q2 it is orthogonal to C. Since I is orthogonal to B and C, it passes through the bundle centers (B,C) H1 and H2. Q.E.D. We have proved that I passes through all of six centers of bundles and that it is orthogonal to A, B, C.
2. Let A is not intersected with B and C, and B and C are intersected among themselves.

Drawing 3.

(Intersected circles B and C; circle A having no common points with them; points Р1 and Р2 – the centers of bundle (A,B), Q1 and Q2 – the centers bundle (A, C))

 Since A(Р1) = Р2, A(Q1) = Q2, it is possible to draw the circle through these four points. It is orthogonal to A, B, C.
3. A is not intersected with C, remaining circles are intersected.

Drawing 4.

(Circles A, B, C, such that B is intersected with A and C; A and C have no common points among themselves; Р1 and Р2 – the centers bundle (A,C))

We invert points Р1 and Р2 through B and draw circle I through four points Р1, Р2, B(Р1), B(Р2). Since it passes through Р1 and Р2 it is orthogonal to A and C, and since it passes through Р1 and B(Р1) –orthogonal В. Q.E.D.

Variants when all circles A, B, C are intersected among themselves are the most interesting. In this case following is probable:

A. None of circles divides the intersection points of two others. For reasons which become clear in following papers I name such case of disposition of circles A, B, C Lobachevsky's case, and three circles - Lobachevsky's circles.

B. All of three circles A, B, C are intersected at one point. I name this variant of disposition Euclidean. In this case there is no the necessary inversion commuting with A, B, C (excluding – as it has been made paper 4 – map of all plane to their intersection point). I suggest reasoning similar to fig. 1 on one’s own.
C. One of the circles divides intersection points of two others. I suggest proving on one’s own that in this case any other circle divides intersection points of two remained. I name such case of disposition of circles A, B, C Riemannian, and circles – Riemannian.

Three Lobachevsky's circles.

Consider case A. Let there are three Lobachevsky's circles.

Drawing 5.

(Three Lobachevsky's circles A, B, С; intersection points of A and C – Р1 and Р2, intersection points of A and B – Q1 and Q2, intersection points of B and C – Т1 and Т2; circle S1 which is passing through P1, Q2, T1 and circle S2 which is passing through P2, Q1, T2; intersection points of circles S1 and S2 – Н1 and Н2)

We draw the circles which are passing through one of points of each pair of intersection points of circles among themselves. As in each pair there are two intersection points, and there are three pairs, total number of circles is 2х2х2=8. These eight circles can be divided naturally into pairs as follows. We choose from three pairs of points by one and draw the circle through the chosen three points. Now we take the remained three points and draw another circle. It is a twin for the first. Thus we divide 8 circles into four pairs of circles. On fig. 5 two twin circles are represented: S1 and S2. S1 passes through P1, Q2, T1, and S2 through the remained points – P2, Q1 and T2.

Among these four pairs of circles can be one pair of not intersected (the proof, that such pair can be only one is not complicated but for the sake of economy of a place I don’t produce it and suggest proofing on one’s own). If it is, we don’t consider it. Thus, three pairs of intersected circles remain. Let S1 and S2 are intersected. We designate points of their intersection as H1 and Н2. Similarly we receive intersection points of two other pairs of circles and designate them as H3, H4, H5, H6. 

The theorem about the orthogonal circle to three Lobachevsky's circles states that all these six points: Н1, Н2, Н3, Н4, Н5, Н6 lie on one circle I and this circle is orthogonal A, B, C. Also this theorem can be named as «theorem about circumcircles of Lobachevsky’s tri-circle» (naming on the analogies of a triangle the circles which are passing through intersection points of three given «circumscribed circle»).

Proof. From the theorem of bundles we know (paper 2) that the inversion I which swaps pairs of intersection points of circles A, B, C exists. I(P1) = P2, I(Q1) = Q2, I(T1) = T2. From this follows that I(S1) = S2. And exact so – the twin circles constructed on intersection points A, B, C are swapped under the action of I. Now we prove the lemma:

if circles F and G are conjugated through inversion O and intersected, and if O is the real inversion, then intersection points remain motionless under the action of O (lie on O). If O is imaginary inversion, then… We become clear will be therein.

The proof is trivial. Since O(F) = G, intersection points F and G are mapped again to intersection points F and G. Since intersection points only two, they are either both motionless or interchanged their positions. We consider at first the case when O is the real inversion. If the pair of intersection points F and G is swapped under the action of O, all circles which are passing through this pair are orthogonal to O and under the inversion through O are transformed to itself. But, on condition O(F) = G and F does not coincide with G. Hence, intersection points F and G are not swapped under the inversion through O. Therefore, these intersection points remain motionless and consequently lie on C. Q.E.D.

Let O is the imaginary inversion. Since imaginary inversion does not have motionless points, intersection points F and G interchange their positions. But, applying the same reasoning, as for a case when O is the real inversion, we get that F and G should be orthogonal to O. But it cannot be, since O(F) = G. Where is an exit? The solution that we incidentally have proved that under imaginary inversion an image of a circle and its pre-image cannot be intersected (but can coincide)! (Otherwise the contradiction turns out: intersection points can be neither motionless, nor can be swapped. That means simply that there no such points.)

Let's return to three Lobachevsky's circles represented on fig. 5 and to our theorem. Applying the lemma we get: Н1, Н2 lie on circles I, orthogonal to A, B, C, just as Н3, Н4, Н5, Н6 lie on this circle. Since all these points lie on the intersection of the circles which are swapped under inversion through I. Q.E.D.

Riemannian circles and Euclidean circles.

Let's consider the case when three circles A, B, C - Riemannian, i.e. one of the circles divides intersection points of two others.

Drawing 6.

(Three Riemannian circles A, B, C; intersection points of A and B – Q1, Q2; intersection points of B and C – Т1 and Т2; A and C – Р1 and Р2; circle S1 which is passing through points Р1, Q2, Т1; and circle S2 which is passing through points Р2, Q1, T2)
If in this case we draw circles through intersection points of A with B, B with C, A with C similar to how it is made on fig. 5 and divide as well as in the previous case by pairs, any circle not be intersected with its twin. It directly follows from that the inversion I, commuting with А, B, C and swapping the intersection points I(P1) = P2, I(Q1) = Q2, I(T1) = T2, is imaginary (see paper 2 or paper 3) and the previous lemma about conjugated through imaginary inversion circles.

We can discover the center and the radius of this imaginary inversion I. The center – as a intersection point of straight lines (Р1, Р2), (Q1, Q2) and (T1, T2), the radius – from inversion definition through lengths (see paper 2).

If three circles A, B, C – Euclidean, i.e. all of them pass through one point, there is no inversion (real or imaginary) commuting with A, B and C. This can proved, for example, realized the inversion with the center at this common point. Then three circles are mapped to straight lines. I suggest proving on one’s own that generally for three straight lines there is no circle orthogonal to all of them. We notice exclusion: if all three circles have not one but the two common points, then, certainly, there is an uncountable amount of orthogonal to them circles.

Let's pay attention to the following: the case of Euclidian dispositions of circles can be perceived as outcome of a passage to the limit from Riemannian or Lobachevsky of a case. Or as boundary between these two cases.

New properties of three circles.

If we draw circle D through the common point of intersection of three Euclidean circles A, B, C, it obviously together with any two circles from A, B, C – again forms “Euclidean tri-circle”. If we draw circle D through pair of intersection points of two Riemannian circles (for example, through intersection of A and B), tri-circles B, C, D and A, D, C again are Riemannian (because D is orthogonal to imaginary inversion I which  is orthogonal to A, B, C, since D passes through the pair of conjugated through the inversion points). We can draw new circle D1 through the pair of intersection points of any two of four available circles; together with three others it again forms Riemann tri-circle (or these three circles forms a bundle). So we get the set of circles, any three of which (not lying in one bundle) forms Riemann tri-circle. And all circles of a set are orthogonal the same imaginary inversion I.

If to name as “Lobachevsky tri-circle” triples of circles where can be either two tangent to each other or not intersected (it is logical since in this case the third circle in any way cannot divide “the intersection points of two others”), the similar property is discovered also in three Lobachevsky's circles. If to draw circles D, D1, D2, D3 … through pairs of intersection points of circles of Lobachevsky we get the set of circles, any three of which form Lobachevsky tri-circle. And, certainly, all of them are orthogonal to the real inversion I.

If A, B, C are orthogonal to some circle I (real or imaginary), then A(B), A(C), B(C) and all further circles got by inversions from three given again are orthogonal through I. Using terms of paper 5 it is possible to formulate: the transformations got as compositions of inversions commuting with given I forms a subgroup in the group of all transformations of the flat geometry of circles.

Three-dimensional generalisation of the theorem of Lobachevsky tri-circleе.

Here I only plan three-dimensional generalization of this theorem. Let four orbs A, B, C, D such that any three of them are intersect at two points, and the fourth does not divide these intersection points. Every three orbs from these four have two intersection points. In total there are 4 triple of orbs: A, B, C; A, B, D; A, C, D; B, C, D; and, accordingly, – 4 pairs of intersection points. Just as in the flat case – there is an inversion I mapping each of orbs A, B, C, D to itself and swapping points in each pair of intersection.

Let's choose from each pair of intersection points by a point and draw through them orb S1 (altogether four points are chosen and through four points always is possible to draw an orb), and through the remained four points – orb S2. If orbs S1 and S2 are intersected (or tangent), all their common points (the circle or the point), remain motionless under inversion I. It is proved just as in the flat case. The orb on which the pair of the conjugated points lies is mapped to itself under the inversion through conjugating orb, but I(S1) = S2. S1 does not coincide with S2, so there are conjugated points neither on S1 nor on S2. Therefore, each intersection point of S1 and S2 remains motionless under inversion I. Hence, the circle at which S1 and S2 are intersected lies on I. In total we have four pairs of intersection points, choosing from each pair by one point we have 2х2х2х2=16 orbs, which we group as well as in the flat case by eight pairs (there are the orb drawn through four arbitrarily chosen points and the orb drawn through remained four points in each pair). Circles of intersection of each pair of orbs lie on one orb I. Notice that some pairs of orbs from eight considered pairs can not be intersected.

One more mode of construction of a circle, Lobachevsky's to orthogonal three circles.

Let's return to a plane and specify one more method of construction of a circle orthogonal to three given. Let we have three Lobachevsky's circles A, B, C. 
Drawing 7.

(Three Lobachevsky's circles A, B, C; circle С1 which is passing through intersection points of C and B (from bundle (C,B) not intersecting A. Circle A1 from bundle (С1,A) not intersecting В)

Circles A, B, C and A, B, С1 are orthogonal the same circles I (since the circle orthogonal to C and B is orthogonal also to С1). As well circles A1, С1, B are orthogonal to I since A1 is orthogonal to circles which is orthogonal to С1 and A, and that is – I. But there are no intersected circles among A1, С1, B! Therefore, it is enough to discover the centers of bundles (A1,С1) and (A1,B) and to draw through them a circle; it will be the required (as it has been shown earlier, the centers of bundle (С1, B) also lie on it).

The centers of bundle can be discovered in two ways.

1. Draw a pair of circles orthogonal to two circles of the bundle. Points of their intersection are the bundle centers.

2. To begin the given circles into each other. They start to be tightened to the bundle centers, gradually images of circles be indistinguishable from points. 

Because of item 2 we can simply start to invert circles A1, С1 one to another and when images become very small to draw through them a circle which be practically indistinguishable from orthogonal to three initial. With some small modifications this method (inversion of circles to each other while not “be tightened to a point”) suits also for three initial A, B, C. I will not here go into problems what are the necessary modifications, mark only that if consider composition h = А*В*С, it gradually tightens all points of a plane to a point lying on circle I, i.e. the sequence X, h(X), h(h (X)) … hn (X) … approach to certaat point on circles I whatever was starting point Х (If A, B, C are Riemannian circles nothing similar happens.)
The theorem of three motionless points.

Now we meet one very important lack. In paper 3 without the proof I stated that if we have a transformation got as a composition of inversions and it has three motionless points, this transformation – inversion or identical motion. Now I prove it.

Let's designate these motionless points P, Q, S and draw through them circle I. At first I prove that any point of circle I remains motionless, if P, Q, C are motionless. We designate our transformation of points as f. The image of point X under transformation f is f(X). Since f is a composition of inversions f maps circles to circles and orthogonal circles – to orthogonal circles. If point X lies on one circle with P, Q, S, then also f(X) lies on the same circle since, f(X), f(P), f(Q), f(S) should be again on one circle, but f(P) = P, f(Q) = Q, f(S) = S on a condition. Now I show how to construct, proceeding from three given points P, Q, S uncountable set of other points lying on I and also remaining motionless under action of f.

Let's draw through P and Q circle A orthogonal to I. f(A) is again a circle, and it is orthogonal to I (since f(I) = I) and passing through P and Q (since f(P) = P, f(Q) = Q). Such circle is unique, so f(A) = A, i.e. A passes to itself under the action of f (but points of A can interchange their positions!). Now we spend through S circle B, orthogonal to I and A. Again, such circle is unique and since f(I) = I and f(A) = A,  f(B) = B, it passes to herself under the action of f.

Circle B is intersected with I at some point X1 (and, certainly, at point S). We want to show that point X1 is motionless under the f, f(X1) = X1. Since f(I) = I and f(B) = B,  intersection points of I and B pass to themselves under f. But one of these points – S – is motionless on the condition. Therefore, the second – X1 – also is motionless (simply there is no place to pass more). So, we have proved that if there are three motionless points P, Q, S then there is the fourth motionless point Х1 lying on I.

Drawing 8.

(Circle I; points P, Q, S lying on it; constructed as described above circles A and B and point Х1.)

From paper 5 follows, that X1 is the point symmetric to S through biplet (pairs of points) P and Q; also X1= A(S).

Now we can construct similarly the fifth, the sixth, etc. motionless points (all of them lie on I). Draw the circle orthogonal to I not through P and Q but through P and S and invert through it Q – we get X2, one more motionless point; invert P through the circle orthogonal to I and passing through Q and S – we get Х3, also motionless under f. We can choose any pair of motionless points – there are already six – and invert any of them through circle orthogonal I and passing through any pair of motionless points, then we get a new motionless point.

Let's prove that it is possible through motionless points (taken as described above) to approach to any point Y on circle I as much as close.

Drawing 9.

(Circle I; points P, X1, Q, X3, S, X2, Y arranged clockwise; circle Н orthogonal to P and Х2; point Н(Х3))

Let's choose among motionless points pair of ones such that between them and Y there are no motionless points. On fig. 9 these are points X2 and P. Discover at another side of an arc (Х2,P) (the side there is no Y) a motionless point "far away" from X2 and P, for example Х3. Draw the circle Н through X2 and P orthogonal to I and invert through it Х3. Н(Х3) is again a motionless point and lies on the same side from X2 and P as Y. Now we choose among three points Х2, Н(Х3), P pair of points between which lies Y, and do with this pair the same – draw through it orthogonal to I circle, discover a motionless point "far away" from Y, invert it through drawn circle and so on. At each step we enclose Y in more and more close pairs of motionless points. Q.E.D.

To accelerate the process, we can invert through Н all points lying on the other side of an arc (Х2,Y,P). Among the got images choose the pair between which lies Y and are no motionless points. Construct orthogonal to I circle which is passing through this pair, invert all motionless points tangent to this circle, etc.

So, we have shown that as much as close to any point Y of a circle I there are motionless points. As f is continuous, i.e. maps points close to each other again to points close to each other, f(Y) = Y, i.e. Y is also a motionless point of map f. Hence, all points of circle I remain motionless under f. We want to show now that if there is at least one motionless point K out of I, f is the identical motion (i.e. is motionless on all points of the plane).

Drawing 10.

(Circles I and O; intersection points of these circles G and V, points K and X lying on О)

Let X is an arbitrary point of a plane, we draw through K and X any circle O intersecting I. Let F and V are intersection points. They lie on I; hence, are motionless under f. This means that there are three motionless points on circle O – K, G and B. But we have shown that if there are three motionless points, all points on the circle which are passing through these three points are motionless. So, X lying on the same circle is motionless under f. Q.E.D.

Now we prove the required – that f is either an inversion or the identical transformation. We draw through X pair of any circles O1 and O2, orthogonal to I. f(O1) = O1, f(O2) = O2 (since intersection points O1 and O2 are motionless, and orthogonal circles under f are mapped to orthogonal circles). Therefore, intersection points O1 and O2 (one of them) are either swapped or remain motionless. If f(X) = X that on proved earlier f is the identical motion. Let f maps X to the second intersection point O1 and O2.

Drawing 11.

(Circle I, point X out of it, circle O1 and O2 orthogonal to I and passing through X, the second point of their intersection Y)

Second intersection point O1 and O2 is the image of point X under the inversion through I. Therefore, for an arbitrary point X f(X) = I(X). That was required: f is either an inversion or the identical motion.

Let's analyze and improve the proved. We have proved that every one-to-one continuous map of a plane to itself keeping circles (mapping circles to circles), mapping orthogonal circles to orthogonal and having three motionless points is either an inversion, or the identical motion. Now I prove that in this statement there is tautology. It has been told: “… the map keeping circles and mapping orthogonal circles in orthogonal…” I prove that any one-to-one transformation f, mapping circles to circles – maps orthogonal circles to orthogonal. The proof, perhaps, is easier than the statement. (The similar statement about straight lines on planes is incorrect. For example, plane compression along one of axes of co-ordinates maps straight lines to straight lines, but perpendiculars cease to be perpendicular).

In paper 3 we have shown, that the circle which is passing through three tangency points of three mutually tangent of circles is orthogonal to all of them. Also it has been proved that if two orthogonal circles A and B are intersected at points P and Q, whatever circles C and D tangent to B at points P and Q we draw, – if C and D tangent to each other, the point of their tangency lies on A.

Drawing 17.

(Three mutually tangent circles C, D, B; points of their tangency P, Q, H; circle A which is passing through these three points)

Now we prove the required. Let A and B are orthogonal circles, P and Q – points of their intersection. We need to prove, that f(A) and f(B) are orthogonal. We draw also circles C and D, tangent to B at points P and Q. Let C and D tangent to each other at point Н lying on A. Let’s take f(A), f(B), f(C), f(D). Since f transforms circles to circles and is biunique, f maps tangent to circles to tangent to circles. So, f(B), f(C), f(D) are again a triple mutually tangent circles. Since A passes through points of tangency B, C, D, f(A) passes through tangency points f(B), f(C), f(D). Hence, f(A) is orthogonal to all three circles f(B), f(C), f(D). Also is orthogonal to f (B). Q.E.D.

Let's sum up. We have proved that if continuous one-to-one map f transforms circles to circles and is motionless at three points, then f is either an inversion or the identical motion. 
It is necessary to specify about continuity. If we consider inversions on planes, then, how it has been told, the circle center through which an inversion acts is transformed to infinitely remote point. It creates a map discontinuity: points close to the center of the inversion are transformed to points far from each other. We can go out of this difficulty in two ways: to consider all our constructions not on a plane but on an orb, and there all the inversions and their compositions are continuous everywhere. Or to notice, that the discontinuity at one point not affects cardinally our reasoning. There is also the third mode of a reasoning "rescuing" the proof: the sequence of points approaching to the center of inversion is transformed to sequence of points approaching to infinitely remote point and by that the continuity is kept. But this mode requires too large intrusion of the analysis into our geometrical reasoning.

Bisectrixes or middle circles.

In the first paper in Appolonius’s problem the major role was played by bisectrixes, i.e. such inversions which conjugate two given circles. It was spoken about them also in other papers, for example, in paper 3. As self-evident I mentioned, that the bisectrix between A and B (real or imaginary) lies in one bundle with A and B. Now I’ll prove it and discover other properties of bisectrixes.

If A and B are tangent or intersected, their bisectrix I lies in one bundle with them – geometrically obviously. I suggest proving by one’s own. Let A and B have no common points, i.e. forms an imaginary bundle. We show that their bisectrix I maps the centers of bundle (A, B) again to the bundle centers. Indeed, these centers are conjugated through A, therefore their images under the inversion through I are conjugated with I(A) = B. But the same centers are conjugated also through B, so, the images of these centers are conjugated under I with I(B) = A. Hence, the images of these centers are conjugated through A and through B. But we have only one pair of such points – these are initial centers of the bundle. Therefore, I maps this pair to itself. If I leaves each center of the bundle motionless, I is orthogonal to A and B, hence – is not their bisectrix. This means that I swaps the centers of bundle A and B. So, by definition of an imaginary bundle I lies in bundle (A, B). Q.E.D. From here follows that I is orthogonal to all circles, which are orthogonal to A and B. This allows us to understand at once, how I acts on points.

Drawing 12.

(Circles A and B; circle C orthogonal to them; intersection points C with A – Н1 and Н2, C with B – Т2, Т1, so that point Н2 lies opposite Т2 and point Н1 – opposite Т1; the pair of points Н1, Т2 separates pair of points Н2, Т1)

As it has been proved, as long as C is orthogonal to A and B, it also is orthogonal to I. I(C) = C. So, intersection points of C and A are transformed under I to intersection of points C and B. Two cases are possible:

1. I(H1) = T1, I(H2) = T2,

2. I(H1) = T2, I(H2) = T1.

Let's consider the first case. As it has been shown in paper 2 – an inversion is completely set by images of two points, we can discover the inversion center as intersection of straight lines (Н2,Т2) and (Н1,Т1). But usually we do not have necessity to discover the center. Knowing images of two points, as it is described in paper 2, we could discover the image of any third point. Pair of points Н1, I(H1) = T1 does not separate pair of points Н2, I(H2) = T2; the intersection point of the straight lines which are passing through these pairs does not separate these points, therefore in this case we have the real inversion.

In the second case pair of points Н1, I(H1) = T2 divides pair of points H2, I(H2) = T1, and the intersection point of the straight lines which are passing through these pairs separates pair of points, therefore I is the imaginary inversion, it does not have motionless circle.

If A and B are intersected:

Drawing 13.

(Intersected circles A and B; circle C orthogonal to them; intersection point of C with A – Н1 and Н2, intersection points of C with B – Т1 and Т2; the pair of points Н1 and Н2 separates the pair of points Т1 and Т2)

Now neither pair of points Н1, T1 separates pair Н2, Т2, nor pair Н1, Т2 separates pair Н2, Т1. Arguing similarly to previous case we get that either I(H1) = T1 and I(H2) = T2, or I(H1) = T2, I(H2) = T1. But, unlike the previous case in both cases I is the real inversion (since pairs of points image-preimage doesn’t separate each other).

Drawing 14а.

(Pair of intersected circles A and B; points of their intersection P and Q; bisectrix I1 passing in both circles and out of them; interior arcs of circles are interchanged their positions; just as exterior)

Drawing 14б.

(The same as in drawing 14a, but bisectrix I2 passes through points lying inside of circles. The exterior arc of one circle is transformed to the interior arc, and inversely.)

At last, if A and B tangent to each other, the circle orthogonal to them necessarily passes through point of tangency P.
Drawing 15.

(Circles A and B tangent at point P; circle C orthogonal to them; intersection points of this circle with A – Н1 and P, with B – Т1 and Р)

Since I(P) = P only one case is possible – I(H1) = T1. Inversion I is univalently defined. We can draw also С1 orthogonal to A and B, and get at points of its intersection with A and B one more pair of points conjugated through I.

So, we have proved, that:

1. Two intersected circles have two real bisectrixes.

2. The circles which do not have generic points also have two bisectrixes. The first is real, another – imaginary. Imaginary inversion maps points of circle A to circle B as though "cross-wise".

3. In both cases both bisectrixes commute with each other (see paper 3).

4. If circles are tangent, there is only one bisectrix between them. (This case can be considered as transitive between intersected and none intersected circles. Intersection points are arranged "very close" to each other.)

How to construct circle I?

We have shown how to determine an image of an arbitrary point X on A under inversion I. It is enough to draw orthogonal to A and B circle C through point Х (for this purpose it is possible to invert X through B, the got to invert through A and to draw the circle through three points, it is orthogonal to A and B and passes through X). In order to choose, what of two intersection points B with C is I(X), it is necessary to know, what of two possible bisectrixes is necessary to us. Let we know it. Then we take on circle A three points Х1, Х2, Х3 and discover by the specified method their images I(X1), I(X2), I(X3). And if we know the images of three points under the real inversion we can easily construct also the inversion circle, for example, by means of the theorem of Lobachevsky's three circles. Lobachevsky's three circles in this case are the circles passing through:

1. X1, X2, I (X1), I(X2);
2. X2, X3, I (X2), I(X3);
3. X1, X3, I (X1), I(X3).
We construct circles at intersection points of these three circles as it has been described in the named theorem: the circles which are passing through points X1, X2, I(X3) and I(X1), I(X2), X3 are intersected at points lying on I; also the circles which are passing through points: X1, I(X2), X3 and I(X1), X2, I(X3) are intersected at points lying on I. The circle drawn through these intersection points is required I.

In the case when A and B have common points there are also more simple methods of construction of a bisectrix, but here I won’t write about them.

In paper 5 biplet symmetry has been defined (symmetry in pair of points). We use this concept to determine, what is the composition of inversions through to two bisectrixes between A and B. Let I1(A) = B and I2(A) = B. Clearly, that I1*I2(A) = A, I1*I2(B) = B. Since I1 and I2 commute, I1*I2 is the biplet symmetry. The extremities of the biplet are the centers of bundle (A, B). If A and B are intersected, the extremities of biplet are the points of their intersection; this is similar to that a composition of symmetries in two bisectrixes of straight lines is a reflection in the point of their intersection. But if A and B have no common points, the extremities of this biplet are the centers of imaginary bundle (A,B). They are conjugated both under A and under B.
Again Appolonius’s problem.
Let's return to Appolonius’s problem about determination of the circles tangent to three given. We remind in brief the construction made in paper 1.

1. Bisectrixes between circles A, B and C have been drawn.
2. The case when three bisectrixes are intersected at two points was considered (and the case when bisectrixes are not intersected was set aside).

3. Perpendicular circles to A, B, C were drawn through intersection points of bisectrixes.

4. From intersection points of these perpendiculars with A, B, C got out by a point and affirmed that the circle drawn through these three points is tangent to A, B and C. 
Drawing 16.

(Three circles of Riemann A, B, C; bisectrixes between A and B, B and C, C and A intersected at two points and perpendiculars from these intersection points; intersection points and the circle which is passing through them)
This method always works, if three initial circles are Riemannian, i.e. one separates intersection points of two others. Then bisectrixes are necessarily intersected. But how to modify it for the case when they are not intersected? For example:

Drawing 17.

(Three not intersected circles A, B, C, neither of them separate two others; a bisectrix between A and B and a bisectrix between B and C do not intersect each other)
Then we need concept of bundle. If bisectrix I1 between A and B is not intersected with bisectrix К1 between B and C, nevertheless it forms with К1 the bundle of circles. The theorem of bisectrixes states that one of two bisectrixes between A and C necessarily lies in this bundle. We will prove the theorem of bisectrixes later. If I1 and К1 are intersected, we would draw through intersection the points circle perpendicular to A, B and C. This is possible to be formulated more generally. Inversions orthogonal to (commuting with) A, B or С get out from bundle (I1,К1). It is possible to do always since in any bundle there is an inversion (real or imaginary) commuting with the given (see paper 4). (There is an exception if the given circle passes through one of the centers of an imaginary bundle).

So, we have understood with what to do, if bisectrixes are not intersected. It is necessary to prove, that the circle constructed by the specified method is really necessarily tangent to A, B, C. At first we prove that the constructed circle is orthogonal to bisectrixes I1 and К1 (between A and B and between B and C). I1(A) = B, K1(B) = C. The centers of bundle (I1, K1) under symmetry in I1 are transformed to themselves and the whole bundle too; the circle of the bundle orthogonal to A is transformed to the circle orthogonal to B. Therefore, intersection points of the circle, orthogonal A, with A are transformed to intersection points of the circle, orthogonal B, with B. Let designate intersection points of the perpendicular with A as A1 and A2, with B – as В1 and В2.  Then I1(A1) is equal either to В1 or to В2. Let it be В1. The circle which is passing through A1 and В1, therefore, is orthogonal to I1. Now we consider operation К1 at В1 and В2. К1 transforms bundle (I1,K1) to itself, and the perpendicular to B to the perpendicular to C (since К1(B) = C). Let К1(В1) = С1. Then С1 is one of the intersection points of the perpendicular to circle C from bundle (I1,K1) with С. We draw the circle through A1, В1, С1. It is orthogonal to I1 since I1(A1) = B1; it is orthogonal to K1 since K1 (B1) = C1. Q.E.D.

Let's designate the constructed circle which is passing through A1, В1, С1 as S. We also have specified how to choose points (from the pairs of intersection points) in order to draw the circle tangent to A, B, C. It is possible to choose the first point arbitrarily, then to reflect it trough I1 and К1 and to take images. (The remained points give the second circle tangent to A, B, C.) We will prove that if constructed circle S is tangent to one of three circles A, B, C – for example B, – then it is tangent also to remaining two. It is simple. Let S is tangent to B, then I1(S) is tangent to I1(B) = A, К1(S) is tangent to К1(B) = С. But I1(S) = K1(S) = S since S is orthogonal to I1 and К1. This means that S is tangent to A and C. Q.E.D.

To prove that S is the required circle tangent to A, B and C, it is necessary to prove that S is tangent to B (or to one of three given circles). It will be made in following papers.

Paper 7.

Modeling of geometries of Lobachevsky, Euclid and Riemann in the geometry of circles.

The paper summary.

In the paper two models of geometries of Euclid, Riemann and Lobachevsky connected among them are set out. The first model is three-dimensional. We imagine that Eye in space looks at an orb. And there is nothing more in space. If Eye is arranged out of the orb, it sees that submits to laws of geometry of Lobachevsky; if Eye is on the orb surface, it sees geometry of Euclid, and inside the orb – geometry of Riemann.

The second model is flat, and as well as in the previous case appears possible to study different geometries jointly, within the limits of the geometry of circles. Theorems of the sum of angles of a triangle are proved in different geometries, of the intersection of bisectrixes of a triangle and of the isosceles triangle in different geometries.

These theorems are proved by means of study of angles between circles and concepts of "isogonal circles” (the circles organizing identical angle with two given circles). The theorem of bisectrixes in triangles in different geometries turns out to be the special case of the theorem of bisectrixes between circles.

It is desirable but not necessarily to see paper 4 and paper 5 before reading of this paper. The three-dimensional model of non-Euclidean geometries is considered in my paper in «Mathematical education» magazine (№3, 1999).

Three-dimensional model of various geometries.

I would begin simply for the readers who closely read paper 4 and have seen paper 5: we consider A-transformation of orb S with the center at O. 
1. If O is arranged outside of S the subgroup generated by A-transformations commuting with A-transformation in center O is isomorphic with the group of motions of flat geometry of Lobachevsky. The pair of points (Х,O(X)) is called as a point of geometry of Lobachevsky, and the circles of orb S lying in one plane from O – as straight lines of geometry of Lobachevsky. At that A-transformation, commuting with O(X) determines point or line symmetry of Lobachevsky's geometry. The center of such A-transformation lies on a polar of point of O. Designate the center of this map as B. If B is out of the orb, B(X) determines line symmetry, and if inside – point symmetry.

2. If O is arranged inside the orb, then the definition of “points and straight lines of Riemannian geometry” is the same as before. The subgroup generated by A-transformations, commuting with O(X) is isomorphic with the group of motions of Riemannian geometry. Any point B lying on polar O determines line symmetry of Riemannian geometry. Polar O in this case wholly lies outside of C. 
3. If O lies on orb S, we consider map of whole orb S to one point O and a set of A-transformations commuting with this map. The pair of points (Х, O(X)) determines a point of Euclidean geometry, and the circles which are passing through O (lying in one plane with O) are called as straight lines of Euclidean geometry. The centers of the A-transformations commuting with O(X) (O(X) = O for all X) lie in the plane tangent to S at point O. These A-transformations generate a subgroup isomorphic with the group of motions of Euclidean geometry and each of them determines line symmetry of geometries of Euclid.

But, as I try to make papers not so dependent from each other now I explain the described constructions. Let O – an arbitrary point of three-dimensional Euclidean spaces. We name as "sheaf" all planes and straight lines which are passing through O. Any two planes from a sheaf are intersected at some straight line from this sheaf. We locate now in space an orb S. I name as "point" of geometry (not specifying while what – Euclidean, Riemannian or Lobachevsky) a straight line from the sheaf intersecting the orb. I name as "straight line" of geometry (besides, not specifying, which geometry) a plane from the sheaf intersecting the orb. We want to show now that properties of points and straight lines in geometries of Riemann, Lobachevsky and Euclid in accuracy answer three chances of a disposition of orb S and point O.
1. Point O lies inside orb C. In this case any straight line of the sheaf intersects an orb in two points, so, sets geometry "point", and any plane of the sheaf – intersects the orb at some circle and, consequently, sets some "straight line" of geometry. As it has been noticed, any two planes of the sheaf ("straight lines" of our geometry) are intersected at some straight line of the sheaf ("point" of our geometry). It means that in our geometry all straight lines are intersected, and there are no parallel lines. That is happens in geometry of Riemann.

2. Point O lies outside of orb C. In this case not all of straight lines of the sheaf intersect the orb and, consequently, not all of them set geometry "point". The straight lines intersecting the orb lie inside a cone with the top at O and with the base at the circle on orb S in which straight lines of sheaf are tangent to C. Precisely as in the previous case not all the planes of the sheaf intersect the orb and, consequently, not all them set "straight lines" of geometry. We take two arbitrary planes intersecting orb C. They are intersected at some straight line of sheaf. If this straight line does not intersect orb S, the "straight lines" of the geometry determined by the planes of the sheaf have no intersection "point" in our geometry. It is possible to construct the whole set of none intersected "straight lines" of our geometry. We take the straight line of the sheaf which does not have common points with orb S. Draw any two planes passing through this straight line and intersecting C. All of them determine the "straight lines" of the geometry which do not have common points. This property of straight lines is characteristic for Lobachevsky's geometry.

3. Point O lies on orb S. This case occupies intermediate position between two considered. Here, as well as in the previous there are straight lines of the sheaf which are not setting any "point" of the geometry. All of them lie on plane Н tangent to S at point of O. Plane Н is the unique plane of the sheaf not intersecting S and, consequently, the unique which does not define "straight line" of the geometry. What are the none-intersected straight lines in this geometry? We take an arbitrary plane A of the sheaf which does not coincide with H. It is intersected with Н at some straight line L. If other plane of the sheaf – B – is intersected with A at straight line L, then "straight lines" of the geometry set by planes of sheaf A and B are not intersected. I leave on reader’s own checking up that the parallel axiom of Euclid in this case is true, i.e. that through any point of the geometry it is always possible to draw one and only one straight line not intersected with the given straight line.

So, we saw that properties of intersections of "straight lines" of the geometry constructed on the basis of orb S and the sheaf with the center at O depending on disposition O outside of, on the surface, or inside orb S correspond to properties of geometry of Lobachevsky, Euclid or Riemann. Now I show how rotational symmetries in these geometries are organized. For this purpose it is necessary to remind definition of A-transformations in space. Let arbitrary point B in space not lying on orb S is given. The map of the orb to itself under which to an arbitrary point X on the orb the second intersection point of straight line (B,X) with the orb is put in correspondence is called as A-transformation of orb S with the center at B. If (B,X) is tangent to orb S, then B(X) = Х (the point is mapped to itself). A-transformations with the center at B are obviously connected with the sheaf of straight lines with the same center. Let’s designate outcome of an acttion of A-transformation with the center at point B on X as B(X) (see paper 4). It is obvious from definition A-transformation that B(B(X)) = Х. In other words B is involute map and thus is similar to symmetry. Therefore, A-transformations could be a model of symmetries of the geometries which we construct.

Earlier we defined geometry "point" as a straight line of the sheaf with the center at O. Let’s modify the definition. We name a pair of intersection points of a straight line of a sheaf with an orb as "point" of a geometry. Or, such pair of points of orb S which lies on one straight line with O. Similarly we name the circle on which the sheaf plane intersects the orb (or the circles of the orb lying in one plane with O) as "straight line" of a geometry. After this modification we can study geometry being on orb S, whereas the previous definitions are suited when we observe the orb from point O.
Arbitrary A-transformation somehow maps orb S to itself. In order to A-transformation could be symmetry of geometry it should map "points" of geometry again to "points". Let B is an A-transformation center. To be the "candidate" for symmetries of geometry B(X) should map a pair of points lying on one straight line with O again to a pair points lying on one straight line with O. So, if points X and Y are on one straight line with O B(X) and B(Y) must be again on one straight line with O. (!) If O is not on surface of S we can consider A-transformation with the center at O. The fact that X and Y lie on one straight line with O means in accuracy that O(X) = Y and condition (!) is possible to formulate so: if O(X) = Y, then O(B(X)) = В(Y). Or O(B(X)) = В(O(X)). It means that O and B(X) commute (see the paper 4 beginning).

Let point O, the sheaf center, lies outside of orb S. Then, as it has been told earlier, there is a circle on orb S on which straight lines of the sheaf are tangent to S (the foundation of the cone with top in O). These tangent straight lines of the sheaf do not set any point of geometry. Moreover, it is impossible to select a pair to point K on this circle, i.e. the second point К1 such that (K,К1) would lie on one straight line with O and then the pair of points (K,К1) set a geometry point. It is easy to understand that all points of this circle should remain on the circle under the influence of the A-transformations approaching for symmetries of our geometry, satisfying to the condition (!). Geometrically it means that all centers of such A-transformations should lie on the plane in which the circle of the tangential cone lies. This plane is called as a polar of point O. Using the theory of polars (see paper 4) it is possible to prove that any point B on a plane which is polar to O satisfies (!).

So, A-transformation with the center lying on the plane, polar to O, maps geometry points (pairs of points on orb S, lying on one straight line with O) to geometry points. Let’s clear up where such A-transformation maps straight lines of our geometry (the circles of the orb lying in one plane with O). It is not too complicate to show that any A-transformation (wherever its center is) maps circles of orb S again to circles. (If points P, Q, T, W of the orb lie on one circle points B(P), B(Q), B(T), B(W) also lie on one circle.) In order that A-transformation maps "straight lines" geometries to "straight lines" is necessary and sufficient that it maps any circle lying in one plane with O to a circle lying in one plane with O. I refer to the theory of polars again. However there are also other not complicated methods to prove that if A-transformation center lies on polar of O the required is true. Therefore, A-transformations with the centers on the polar of O maps geometry "points" to geometry “points” and "straight lines" – to "straight lines".

We argued using “a circle of a tangential cone” with the center at point O. I.e. reasoning is suitable only for the case when point O lies outside of orb S. The theory of polars allows expanding of the proved also on the case when O lies inside or on surface of orb S. If O lies inside S, there is a plane which is not intersecting an orb and which is named as polar of O (it possesses the property that O lies on the polar to each point of this plane). If the A-transformation center lies on it, all the necessary properties are valid. (If the A-transformation center is not in this plane, A-transformation does not transform geometry "point" to "points"). If O lies in orb S its polar is the plane tangent to S at O. I leave to reader’s own to prove that A-transformations with the centers in this plane maps "straight lines" of geometry to "straight lines" and "points" to "points". Though in this case point O does not set any A-transformation, we can connect with it the map transforming all points of orb S to point О (O(X) = O for all X on the orb). And then it is possible to say that B – the A-transformation center – lies on the polar to O only when O(X) commutes with B(X).

Also A-transformations keep angles between geometry "straight lines". After all A-transformations is an inversion of orb S (real or imaginary, see paper 4), and the inversion keeps angles between circles. "Straight lines" of geometry is a special case of circles, therefore, A-transformation keeps angles also between them. So A-transformations:

1. map straight lines of a geometry to straight lines,
2. keep angles between them,
3. are involute, A(A(X)) = Х.
In case of geometries of Riemann or Lobachevsky it is enough first two conditions to state that A-transformations keep distances between points and are motions of plane. In the case of geometry of Euclid geometrical similarity also keeps angles between straight lines, but it does not keep distance between points and, consequently, is not a geometry motion. But the similarity is not involute! With regard to item 3 also in this, the Euclidean case, A-transformation is a motion of a plane (Euclidean). More precisely speaking – symmetry.

In what is the symmetry? Let B is an arbitrary point on polar O, symmetry to what sets A-transformation with the center at B? If B is outside of the orb, A-transformation with the center at B determines at S the circle of the tangential cone with the top at B. If a point X lies on this circle, B(X) = Х. From the theory of polars it is known, that this circle lies in one plane with O and, consequently, is "straight line" of the geometry. Just the symmetry in this straight line is set by A-transformation with the center at B. If point B lies on polar O and is inside S we consider a straight line (B,O). It intersects orb S at two points, this pair points determines geometry "point". Just the symmetry in this "point" of geometry is set by the A-transformation with the center at point B.
Let's specify more that in the case when O lays outside of orb S (a case of geometry of Lobachevsky) the cut set of orb S by the plane Н polar to O gives known model of Cayley-Klein. In this model a “point” is an intersection of straight line of the sheaf intersecting orb S with Н, and a "straight line" – the intersection of a plane of the sheaf intersecting the orb with Н.

In my opinion, the produced model of different geometries is nice both the visualization and "homogeneity" (different geometries turn out as a result of simple movement of point O outside of, on surface and inside the orb). Therefore, I think they are convenient for using at education. The model can be studied further.

Circles in different geometries.

How does within the limits of the produced model the circle look? We define a circle a little unusually. Let point P is the center of the circle and point Q lies on it. I name as circle a set of points where can be transformed Q after symmetries in various straight lines passing through Х.

Drawing 1.

(Points P and Q; some straight lines L1, L2, L3 passing through P; images of point Q under symmetry in these straight lines L1(Q), L2(Q), L3(Q)) 

Let's determine what it means for our model. Point P is represented in our model by two points Р1 and Р2 lying on one straight line with O. A-transformation leaving pair (Р1,Р2) motionless is:

1. either the A-transformations which centers lie on straight line (Р1,Р2); then points Р1 and Р2 are swapped;
2. or the A-transformations which centers lie on a plane tangent to Р1 and on a plane tangent to Р2, i.e. – on intersection of these planes. These A-transformations map point Р1 in Р1 and Р2 in Р2.

On the other hand, we interested only in those A-transformations which lie on Н, polar of O. Just they interest determine symmetries of geometry. It is known from the theory of polars that two planes described in paper 2 are intersected at a straight line lying on Н, polar of O. Let’s designate this straight line as L. Point Q of geometry is represented on an orb by the pair of points Q1 and Q2 (lying on one straight line with O). Draw through L and Q1 a plane, its intersection with S gives a set of points on S where can be mapped Q1 under the influence of A-transformations with the centers lying on L. The intersection of an orb and a plane is a circle. Therefore, the geometry circle is represented by a circle on an orb (more precisely, by a pair of circles, after all we can draw a plane also through L and Q2). We have advanced the reasoning suitable for all three cases of disposition S and O, i.e. for geometries of Riemann, Lobachevsky and Euclid simultaneously. The case described in item 1 corresponds to point symmetry (in point P).

Not to be confused in «pairs of points» (representing a geometry point), it is possible by some or other convenient mode to consider only a part of orb in which lies one of the representative of the pair. For example, if O is outside of and above the orb we consider only that part of the orb which lies over polar O closer to the O.
This model has a shortcoming. It is three-dimensional. But we study flat geometries of Riemann, Euclid and Lobachevsky. Therefore now I give an account of flat model homogeneously enveloping all three cases.

Flat model of various geometries.

The flat model begins so simply that it is even amusing. We take any three circles A, B, C. We name them as "straight lines" of a geometry, and pairs of points of their intersection – as geometry "points". Also we name all circles lying in bundles formed by these three as geometry "straight lines". Pair of intersection points from the resulting set we name as geometry "point", any circle which is passing through this pair of points as "straight line" of the geometry, also any circle from a bundle set by two circles from the set is also "straight line" of the geometry. (Exactly circles we include in "straight line" of the geometry, not imaginary inversions.)
What the geometry? It depends on a disposition of initial circles A, B, C. If they are the Riemannian (i.e. one of three circles separates intersection points of two others), the geometry also turns out Riemannian. If they are the Euclidean (i.e. all three intersect at one point), the geometry also turn out Euclidean. The same is for Lobachevsky's three circles (i.e. neither circle does not separate intersection points of two others). (See paper 6 about a circle orthogonal to three given.)

Before all consider the case of Euclidian disposition of three circles A, B, C. Let O is a point in which all of them are intersected. It is easy to see that any circle from the set constructed by the mode specified above passes through О. (And vice versa any circle which is passing through O could be got from A, B, C by the described mode.) Let’s make any inversion with the center O. Under it all circles of the set ("straight lines" of the geometry) are mapped to straight lines of a usual Euclidean plane. Geometry "points" are the pairs of points (Х,O) where X is any point of the plane. Under the inversion O is mapped to infinitely remote point, and X to any other point of the plane. We can operate with this pair as with one point because the second point in all pairs is identical and infinitely far. We have received a usual Euclidean geometry.

What circles intersected at O, represent parallel straight lines? Since parallel straight lines do not have intersection point (except infinitely remote, and it is represented by point O), O should be a unique common point for such circles. It is possible only if they are tangent to each other at O. So, parallel straight lines are represented by circles tangent to each other at point O. 
A(O) = В(O) = С(O), and any circle which is passing through O leaves O motionless under inversion. Therefore no composition of inversions could map any other point X to O. This is the property of infinitely remote point. No motion could map to it and it is motionless under all motions of a plane.

In the case of the Riemannian disposition of three initial A, B, C any two circles representing "straight lines" of the geometry are intersected, so straight lines of Riemannian geometry behave. If taken A, B, C are Lobachevsky's circles, there are lot of none-intersected "straight lines" of the geometry among the circles representing them, that it is peculiar to Lobachevsky's geometry. In the cases of Riemannian or Lobachevsky dispositions of three initial circles A, B, C there is orthogonal to all of them circle I. In Lobachevsky's case I is the real inversion which has a motionless circle, in the case of Riemannian disposition I is the imaginary inversion. All circles got by the described mode representing "straight lines" of the geometry are orthogonal to I. It follows from the fact that all circles from bundles (A,B), (B,C), (A,C) are orthogonal to I, since I is orthogonal to A, B, C, and pairs of intersection points of the circles representing "straight lines" are conjugated under I. (see paper 6 and paper 2).

If the radius of circle I is very small or we are placed very far from this circle, properties of geometries of Lobachevsky and Riemann are similar to properties of geometry of Euclid. After all «very small circle» is almost a point. Or, if far to leave from a circle, it looks like a point too.

Connection of flat and space models.

Let's connect this model with constructed before space model. The space model is reduced to getting out of the A-transformation with the center at O of orb S. Then the set of A-transformations commuting with O(X) is considered; they lie on a polar to O. A-transformations are inversions of an orb. Choosing the A-transformation with the center O means simply choosing the inversion; and the A-transformations commuting with this inversion are the inversions commuting with the given point О. Therefore two models are equivalent. It would become absolutely obvious, if I begin construction of the flat model so: “we name circles orthogonal to the given inversion I as ‘straight lines’ of the geometry; if I is an imaginary inversion, it is the geometry of Riemann; if real –Lobachevsky's geometry». This mode would be worse for two reasons. 1. The geometry of Euclid falls out. 2. The circle I is absolutely not necessary for proof of many theorems.

As well as in space model I consider, what is circle within the limits of the offered model. For this purpose again we use the definition of circle given on fig. 1. "Straight lines" of geometry which are passing through "point" P of the geometry are the circles which are passing through the pair of points Р1 and Р2; we search how do inversions through all these circles act at a "point" of the geometry. A "Point" is a pair of points Q1 and Q2, but it is quite enough to us to trace an action on one of these points, for example Q1.

Drawing 2.

(Two intersected circles F and Н, points of their intersection P1 and Р2, point Q1, circle Т which is passing through Н1 and orthogonal to F and H)

The circles which are passing through Р1 and Р2 form the bundle. We spend through Q1 circle Т, orthogonal to any two circles of this bundle, e.g. given F and Н; on properties of bundles it is orthogonal to all circles of bundle (F,H), hence, under inversions through circles from the bundle point Q1 moves along circle T. Therefore, circle of the geometry is represented by the circle on the plane. Our reasoning envelops at once all three possible cases (Riemann, Euclid and Lobachevsky).
But, in case of Lobachevsky's geometry not any circle on a plane is a circle of geometry of Lobachevsky. Let two circles representing "straight lines" of the geometry of Lobachevsky are not intersected.

Drawing 3.

(Two none-intersected circles F and Н, the bundle centers (F,H) – points O1 and O2; point Q1; circle Т orthogonal to F and Н and passing through Q1)

Circle Т orthogonal to F and Н does not represent any circle of the geometry of Lobachevsky since it does not have "center" in this geometry. The centers of imaginary bundle (F,H) O1 and O2 lie on I – the circles orthogonal to all circles representing "straight lines" the geometry of Lobachevsky. Since Т passes through O1 and O2, Т necessarily intersects I – such circles do not represent circles of the geometry of Lobachevsky.

Let's notice one more good property of this model: the angle between the circles representing "straight lines" coincides with the angle between the straight lines, which these circles represent. 

Fruitfulness of flat model.

In my opinion this flat model is rather convenient for proofs of theorems of all geometries – Riemann of Euclid, Lobachevsky. Especially the model is fruitful for proofs of theorems of triangles; they are reduced to the proof of certain properties of three circles A, B, C. 
The distance between "points" of geometries needs to be studied and defined specially (on the basis of the harmonious ration, paper 4, 5), but angles between "straight lines" simply are angles between circles representing them. Therefore, it is easier to prove theorems about angles, bisectrixes, etc. I mention two examples:

1. The sum of angles of a triangle of different geometries.

2. Triangle bisectrixes intersect each other at one point in all three geometries.

The sum of angles of a triangle or «angles in tri-circleе».

In geometry of Euclid.

Drawing 4.

(Three circles A, B, C intersected at one point O. The smallest circle, C, lies inside circles A and B; points of intersection A with B – O and Н, B with C – O and Q, A with C – O and P; the identical angles which form a semicircle at point O are marked)

The second intersection points of circles A, B, C among themselves (it is possible to discard the first point O since all straight lines and circles representing them are intersected at it) are the tops of the Euclidean triangle. Triangle PQH is represented in model by three arcs PQ, QH, and HP. Now we use the fact that circles are intersected at two points and angles are identical in both points. We see that angles between corresponding arcs converge at point O and there supplement each other (without intersections) to the angle of 180 degrees. Hence, the sum of angles between the specified arcs is equal to 180 degrees and the sum of angles of the triangle too. Q.E.D. This proof does not demand carrying out of any auxiliary lines. And at the usual proof it is necessary to draw a straight line through one of the tops parallel to the third leg.

In geometry of Riemann the sum of angles of a triangle always is more than 180 degrees.

Drawing 5.

(Three Riemannian circles A, B, C; circle D passing through those intersection points of A and B with C which lie inside A and B and through intersection point of A with B which lies outside of С)

Let's draw three Riemannian circles A, B, С. As legs of the triangle we take the arcs limiting the area lying inside all circles. We draw circle D through intersection point of A with B and through intersection points of C with A and C with B. Circles A, B, D are intersected at one point, what means on proved earlier that the sum of their angles is equal to 180 degrees. But circle D passes inside the arcs making the triangle and through its tops, therefore, the sum of angles between D, B, A always is less, than the sum of angles between A, B, C, therefore, the sum of the angles formed by arcs АВ, ВС and СА is more than 180 degrees. Q.E.D. (In my opinion this reasoning cannot be understood without a drawing, but even in bad drawing it is transparent enough; the main thing not to be mistaken in orientation of angles and not to get confused with basic and complementary angles).

In Lobachevsky's geometry the sum of angles of a triangle always is less than 180 degrees.

Drawing 6.

(Three circles of Lobachevsky – A, B and С; B is placed inside A and C; auxiliary circle D passing through intersection point of A with C and intersection points of B with A and B with C which lie more close to another intersection point of A and C)

In this case we consider as a triangle three intersection points A, B, C among themselves which lie further from that intersection point of A with C through which passes D. In this case D does not enter into the triangle though pass through its two tops. Therefore, the sum of angles of tri-circle А, B, C is less than sum of angles tri-circle A, B, D, and the last is equal to 180 degrees since A, B, D are intersected at one point. As well as in the previous case the reasoning is very transparent even at bad drawing.

In the cases of Riemann or Lobachevsky there is a problem of a choice of three points which can be considered as triangle’s tops. Also it is not clear what arcs to consider as legs. This problem is reduced to the following. A geometry point is represented by a pair of intersection points of circles. How to choose from this pair one point? For this purpose it is convenient to to use the circle I orthogonal to A, B, C. If I is the real circle and we deal with Lobachevsky's geometry, the pair conjugated through it points is separated by this circle. We can choose as the representative the point of pair lying inside circle I. Then all points of the geometry are the points inside circle I. If I is the imaginary inversion we can choose any real circle orthogonal to I. Under the influence of I this circle «is turned inside out»; it separates conjugated through I points; and, again, we can choose as the geometry points the interior of this circle. However, not in all theorems there is a necessity to use it.

Though theorems becomes easier to prove because the circles are intersected at two points and this increases an amount of equal angles, it is necessary to be careful because of considering orientation of angles and distinguishing direct and additional angles.

Isogonal circles.

Before the proof of the theorem of bisectrixes we study properties of “isogonal circles”.

Let two circles A and B are taken. Circle C is called as isogonal to A and B if the angle between A and C is equal to the angle between B and C. The particular case of isogonal circles is tangency of C to A and B or orthogonality of C to A and B. Considering of isogonal circles accustoms us to be attentive towards a disposition of angles and to notice their orientations. We will prove that all circles isogonal to two given A and B are divided into two sets. One set is orthogonal to one bisectrix between A and B and the second – to another bisectrix. Circles orthogonal to A and B belong to both sets at once. If A and B are tangent, they have only one bisectrix. Isogonal to them circles are also divided into two sets. The first is orthogonal to the unique bisectrix, and the second – to all circles which are passing through the point of tangency of A and B. Circles orthogonal to A and B lie in both of these sets simultaneously.

The proof of the fact, that circles from these sets are isogonal to A and B, is trivial. Let I is any bisectrix between A and B, I(A) = B. Let C is orthogonal to I, I(C) = C, then the angle between A and C is equal to the angle between I(A) = B and I(C) = C, i.e. is equal to the angle between B and C, Q.E.D. If A and B are tangent and C passes through the point of tangency A and B:

Drawing 7.

(Two tangent at point P circles A and B; circle C which is passing through P; common tangential straight line at point P to circles A and В)

Any circle C which is passing through P intersects A and B at the same angle as their common tangential straight line. It is similar to that any straight line intersects pair of parallel straight lines at one angle. Q.E.D.

It’s remained only to prove that any circle isogonal to two given A and B belongs to one of the described sets. At first we consider the case when A and B are not tangent. It is enough to prove, that on every circle C isogonal to A and B there is a pair of points conjugated with each other through any bisectrix between A and B.
If C is tangent to A and B, any circle which is passing through points of tangency is isogonal to A and B
Drawing 8.

(Circles A and B; circle C tangent to A and B; circle С1 which is passing through points of tangency of A with C and B with С)

Since C and A are tangent, С1 is isogonal to C and A; since C and B are tangent, С1 is isogonal to C and B. Hence, С1 is isogonal to A and B. Q.E.D. 
Another proof. It has been proved in paper 3 that tangent circles A and B are orthogonal to one of bisectrixes between A and B, tangency points are conjugated through this bisectrix, hence, С1 passing through these points of tangency is orthogonal to this bisectrix. But just now we have proved that circles orthogonal to the bisectrix between A and B are isogonal to A and В. Q.E.D.

Orientation and disposition of angles.
Before the advance it is necessary to produce simple properties of orientation (disposition) of angles. We begin with the geometry of straight lines. Let three straight lines Н, Т, K are intersected at point O and we know the angles between Н1 and Т and between Т1 and K. Then the angle between Н1 and K is equal either the sum or a difference of these angles, depending on their orientation. I name as orientation a direction of rotation of point O at motion from one straight line to another on a known angle. The situation with circles intersected at one point precisely the same. But in the geometry of circles there is a phenomenon which is not present in the geometry of straight lines. Two circles Н and Т have a second intersection point. And if one considers orientation of the same angle between Н and Т at the second intersection point, it is opposite to the orientation at the first intersection point!

Drawing 9.

(Two circles H and T intersected at points O and O1; arrows show the direction of motion from Н to Т near by the intersection points (arrows go on the smaller angle between Н and T))

Points near by point O rotate in one direction and near by O1 – in another. Certainly, there is also a transitive case – when these points move along a straight line, but the straight line does not have orientation! Therefore, speaking about angle orientation in the case of circles is necessary to add in what intersection point we determine it. We notice one more. If the angle between Н and Т is equal to 90 degrees (Н and Т are orthogonal) there is no possibility to speak about angle orientation because this angle is equal to the complementary.

Let's return to isogonal circles. Let circle C isogonal to A and B intersects circle A at points A1 and A2, circle B – at points В1 and В2. We want to prove that C is orthogonal to one of bisectrixes between A and B. We don’t take interest in point A2 and consider only the angle orientation between A and C at point A1 and orientations of angles between B and C at points В1 and В2 equal to it. As the last two orientations are opposite each other one of them coincides with the angle orientation between A and C at point A1, and another is the opposite. We choose from points В1 and В2 that one in which angle orientation between B and C is opposite to the angle orientation between A and C at point A1. Let it is the point В1.

Let's draw through A1 and В1 arbitrary circle D and show that it is always isogonal to A and B.
Drawing 10.

(Circles A and B; circle C intersecting them at points A1 and В1 chosen as it has been described above; circle D which is passing through points A1, В1)
Let's consider angles between A and D, D and C, A and C, and their orientations at point A1. Let, for example, the angle orientation between C and D is the same as between A and C. Then the angle between A and D is equal to their sum. Now we consider angles and their orientations at point В1. The angle between B and C according to choice of point В1 has the orientation opposite to orientation of angle between A and C, the angle between C and D has the orientation opposite to those that has at point A1 (since circles C and D are intersected at points A1 and В1 and orientations of this angle are opposite in these points). So, the angle between B and D is equal to the angles between B and C and between C and D. Since the angle between B and C is equal to the angle between A and C, the angle between A and D is equal to the angle between B and D. Q.E.D.

If the angle orientation between C and D at point A1 is opposite to the orientation in the same point of the angle between A and C, the angle between A and D is equal to the angle difference between A and C and the angle between C and D. Corresponding orientations at point В1 both change to the opposite and, consequently, remain opposite each other. The angle between B and D, therefore, is equal to a difference between angles B with D and C with D. Hence, the angle between B and D is equal to the angle between A and D. Q.E.D.

Now we draw through points A1 and В1 circle D1 tangent to A at point A1. On proved D1 forms with B the same angle as with A, i.e. D1 is tangent to circle B at point В1. We have already proved (paper 3) that the circle tangent to A and B is orthogonal to one of their bisectrixes and points of their tangency are conjugated through this bisectrix. Hence, A1 and В1 are conjugated through the bisectrix between A and B, and all circles which are passing through these points are orthogonal to this bisectrix, hence, circle C also is orthogonal to it. Q.E.D.

If A and B are tangent and C is isogonal to them, than if C does not pass through common tangency point our reasoning is transferred without a damage (with small modifications). So, we have proved that circles isogonal to two given are orthogonal to one of bisectrixes or (if the given circles are tangent) pass through the point of their tangency.

The theorem of intersection of bisectrixes of three circles and non-Euclidean geometries.
Let three arbitrary circles A, B, C not tangent to each other are given. D1 is a bisectrix between A and B, and D2 is a bisectrix between B and C. The theorem states that one of two existing bisectrixes between A and C necessarily lies in the bundle formed by D1 and D2. 
The proof. Let's consider the bundle of circles orthogonal to D1 and D2. All circles of this bundle are isogonal to A with B and to B with С. Indeed, let O is any circle of this bundle. D1(O) = O, D1(A) = B, hence, the angle between O and A is equal to the angle between O and В. D2(O) = O, D2(B) = C, hence, the angle between O and B is equal to the angle between O and C. From these equalities follows that the angle between O and A is equal to the angle between O and C (transitivity of equality). It means that O is isogonal and to A and C. From proved follows that O is orthogonal to any bisectrix between A and C. Let’s draw also O1 and O2 from the bundle orthogonal to D1 and D2; each of them is isogonal to A and C and, consequently, orthogonal to some bisectrix between A and C. Since among three circles O, O1, O2 everyone is orthogonal to one of bisectrixes between A and C, one of bisectrixes between A and C is orthogonal to two of these three circles, hence, this bisectrix lies in the same bundle that D1 and D2. Q.E.D. I leave for reader’s one to consider the case when there are tangent circles among A, B, C.

Let's return to our model of various geometries. According to it three circles A, B, C are straight lines of a geometry (it is not known what geometry – Riemann, Lobachevsky or Euclid). Thereby we have proved that in any triangle of any geometry bisectrixes are intersected. However, it is required to establish what bisectrixes!

Having proved earlier that isogonal circles are orthogonal to a bisectrix, we have proved in terms of our model (of any geometry!) that in a triangle with equal angles at one of legs the bisectrix of the opposite angle is orthogonal to this leg. True, here again is required to specify what angles are equal.

So, we see that the offered model makes it possible to prove efficiently theorems of none-Euclidean (and Euclidean) geometries simultaneously.

Paper 8.

End of Appolonius’s problem and other problems on construction. 

The paper summary.

In the paper reviewing of Appolonius’s problem comes to the end and single-type problems on construction of orthogonal and tangent circles are considered. The method of fast construction of isogonal circles (see paper 7) is produced.

It is studied when the composition of three inversions lying in one bundle can be the imaginary, and by means of it is found out in various cases how many circles tangent to three given exist. Also geometrical analysis of algebraic outcomes is given.

Returning to Appolonius’s problem (from that place as we have left it in paper 6)

Let's return to the problem about drawing of circle O tangent to three given A, B, C. On the condition O forms an identical (zero) angle with all three circles A, B, C, in other words, is isogonal to them (see paper 7). It follows from here that O is orthogonal to some two bisectrixes:  D1 between A and B, and D2 between B and C (and according to the theorem of bisectrixes of paper 7 also to some bisectrix between A and C). For ones who haven’t read paper 7 I prove here that if O is orthogonal to D1 and D2, the angle between O and A is equal to the angle between O and B and between O and C.
The angle between O and A is equal to the angle between D1(O) = O and D1(A) = B, i.e. to the angle between O and B, the angle between O and B is equal to the angle D2(O) = O and D2(B) = С, i.e. between O and C. Q.E.D. 

Circles, orthogonal to D1 and D2 form some bundle. Therefore the problem is reduced to determination in the given bundle the circle tangent to given. Before to solve this not so complicated problem (actually one of alternatives of its solution is already offered in paper 1), we consider a number of single-type problems on construction of tangential or orthogonal circles. Some of them are trivial, and some contain zest. As we are engaged in the geometry of circles initial operations are: inversion, drawing of circles through three points, determination of common points of two circles. We won’t draw straight lines and discover the centers of circles for solutions of these problems.

Single-type problems on construction.

I number problems by letters of the Latin alphabet. But before to start the list I remind a solution of absolutely simple problem; so simple and important that it should be remembered separately. It was already written about in papers 3 and 4: drawing the circle which is passing through the given point and lying in the given bundle.

Solution. We take two arbitrary circles of a bundle. Draw two circles orthogonal to them, and then draw through the given point a circle, orthogonal to these two. It lies in the same bundle as two initial circles. Q.E.D. Note that if the initial bundle is the real one, it is simply possible to draw a circle through the given point and intersection points of two arbitrary circles of the bundle (that is, certainly, easier than the described construction), and if the bundle is tangent, it is possible to draw through the given point a circle tangent to two arbitrary circles of the bundle (drawing of tangential circles is not so simple). But if the bundle is the imaginary, the solution offered originally is the most convenient. Besides, it is convenient because solves the problem uniquely for bundles of any types.

So, problems on construction. Many problems from the list were already considered more than once. But it is convenient to collect them at one place.

A. Drawing of a circle orthogonal to given circle O and passing through two given points Р1 and Р2. Solution: draw the circle through Р1, Р2, O(Р1).

B. The same, but Р1 lies on O. Solution: draw the circle through Р1, Р2, O(Р2).

C. Drawing of a circle which is tangent to O at given point Р1 and passing through given point Р2. Solution: draw circle O1 through Р1 and Р2, orthogonal to O (see item B), choose point Р3 out of it and O and draw circle O2 orthogonal to O through points Р3 and Р1. Then draw O3 orthogonal to O2 and passing through Р1 and Р2. O3 is the required circle. Proof: O, O2, O3 pass through Р1; O2 is orthogonal to O and O3, hence, O and O3 are tangent at Р1. (For similar reason O1 is tangent to O2 and both of them are orthogonal to O.)
Drawing 1.

(All described above circles and points)

D. Drawing of a circle orthogonal to O and passing through Р1 and Р2 when Р1 and Р2 both lie on O. Solution. The method of items A and B does not work since now O(Р1) = Р1, O(Р2) = Р2 and there is no third point in order to draw circle through it and Р1, Р2. Therefore we construct at first any circle O1 tangent to O at point Р1 (item C) and draw using item B circle O2 orthogonal to O1 through Р1 and Р2. Since O1 is tangent to O at point Р1, O2 is the required. Algorithm: take an arbitrary point Р3 which is not lying on O, draw circle K through Р1, Р3, O(Р3); K is orthogonal to O. Take an arbitrary point Р4 which is not lying on K and O and draw circle O1 through Р4, K(Р4), Р1 – O1 is tangent to O at point Р1. Draw circle O2 through points Р2, Р1, O1(Р2), and it is the required. 

Constructions in this and previous items have useful analogy in the geometry of symmetries of straight lines: if we need to construct a straight line which is passing through the given point and a parallel to the given straight line, we can take an arbitrary point reflect it in the given straight line, draw through received pair of points a straight line, reflect in it the given point and draw through received pair of points a straight line which is the required line.

Now we pass to reviewing of bundles.

E. The real bundle and circle O are given. Need to draw a circle from this bundle orthogonal to the given circle O. Solution: since the real bundle is a population of the circles which are passing through two given points Р1 and Р2 the problem is already solved in items А, В, D. (Depending on, whether points Р1 and Р2 lie on O).

F. The imaginary bundle which both centers Р1 and Р2 do not lie on O is given. Need to draw a circle from this bundle orthogonal to O.
Solution.
Drawing 2.

(Circle O, circles O1 and O2, passing through points Р1 and Р2 and intersecting O; Р1 and Р2 lie at the same side from O)

We draw as it is specified in paper 6 circle O3 to orthogonal three Lobachevsky's circles O, O1, O2. Since O3 is orthogonal to O1 and O2, it lies in the imaginary bundle with the centers at Р1 and Р2. On construction it is orthogonal to О. O3 is the required circle.

If O separates points Р1 and Р2, three circles O, O1, O2 are Riemannian circles and the imaginary inversion which does not have motionless circle is orthogonal to all of them. In this case there is a required inversion, but there is no required circle (or it is the imaginary circle).

G. The same, but exactly one of the centers of the imaginary bundle lies on O. Solution: in this case there is neither circle, nor inversion (real or imaginary) from the given bundle orthogonal to О. (If not consider – as we did in paper 5 – center of the bundle as “small inversion”.) Proof. Let I is the required inversion, and P1 – that center of the bundle which lies on О by definition of an imaginary bundle I(Р1) = Р2. I(P1) should lie on O since I under the supposition is orthogonal to O. But on the condition only one center of the bundle lies on O, therefore Р2 cannot lie on O. Contradiction. Hence, required I does not exist. Q.E.D.

H. The same, but O passes through Р1 and Р2. Solution: O is orthogonal to any circle of the given bundle.

I. Tangent bundle of circles and circle O are given. Need to draw a circle from this bundle orthogonal to O. Solution. Let A and B are two circles from the tangent bundle, P is the point of their tangency. The circle which is passing through O(P) and tangent to B at point P is the required (it is orthogonal to O since passes through points symmetric in O: P and O(P)). About construction of such circle see in item С. (If P lies on O, O is either orthogonal to all circles of the given bundle or – neither.)

Now we solve problems about circles in bundles tangent to O. The same method will be used: it is discovered circle Н orthogonal to O and to all circles of the given bundle. Two circles of the given bundle which are passing through intersection points of O and Н are sought for. Let’s recollect that Appolonius’s problem brought us exactly to this problem.

J. Need to construct a circle lying in an imaginary bundle with centers P1 and Р2 and tangent to the given O.
Solution.

1. Let neither Р1 nor Р2 do not lie on the O.
Drawing 3.

(Circle O, points Р1 and Р2, circle Н which is passing through Р1 and Р2 and orthogonal to O, intersection points of Н and O – Q1 and Q2)
Circle O1 drawn through Q1 and belonging to the given imaginary bundle is the required one. Also circle O2 passing through Q2 and belonging to the bundle is the required. Thus there are two solutions of the problem.

The proof. Circle Н is orthogonal to all circles of the imaginary bundle with the centers at Р1 and Р2 (since passes through the bundle centers), hence O1, a circle of this bundle, also is orthogonal to H. But Н is orthogonal to O, and all three circles O, O1 and Н pass through point Q1. Hence, O is tangent to O1. Q.E.D. The same is about O2.

We have proved, that O1 and O2 are the required circles. Now we prove that there are no other circles satisfying to the condition. Let I belongs to the given bundle and tangent to O. Draw circle Н through the centers of the bundle and the point of tangency of O with I. Since Н passes through the bundle centers it is orthogonal I, and because are I and O tangent, Н is orthogonal to O. Hence, I passes through the intersection point of O with the circle orthogonal to O and to all circles of the given bundle. Such circle is unique. Q.E.D.

2. One of the bundle centers lies on О. In this case there is only one circle tangent to O and belonging to the given imaginary bundle. I suggest modifying of the proof of item 1 by your own.

3. Both centers lie on O. Then O is orthogonal to all circles of the given bundle, hence there are no the circles in the bundle tangent to O.
The problem solution does not depend on that separates O Р1 and Р2 or not.

K. Need to draw a circle belonging to the real bundle with centers P1 and Р2 and tangent to given circle O. Solution (when exists!). The solution is similar to previous case: we draw circle Н orthogonal to all circles of the bundle and O intersecting circle O at points Q1 and Q2. Circles O1 and O2, passing accordingly through Q1, P1, P2 and Q2, P1, P2 are the required ones.

1. Р1 and Р2 lie by one side from O.
Н lies in the imaginary bundle with centers P1 and Р2. We draw Н using item F. The proof, that turning out O1 and O2 are unique, is similarly to the previous case.

2. Р1 and Р2 lie by different sides from О. In this case the inversion orthogonal to the given bundle and circle O is imaginary (see item F), it does not have motionless points and, consequently, there are no intersection points with O. Problem has no solution. It is trivial to prove differently: if O separates Р1 and Р2, any circle which is passing through Р1 and Р2 intersects O and consequently is not tangent to it.

3. One of the bundle centers lies on О. In this case we cannot draw required circle H. Nevertheless there is one and only one circle passing through Р1 and Р2 and tangent to O. See item C. 
4. If Р1 and Р2 both lie on O the required circle does not exist.

L. A bundle of circles tangent at point P is given. Need to discover a circle of the bundle tangent to O. Solution. We draw circle Н, orthogonal to all circles of the given bundle as follows: through points P, O(P), O1(O(P)), where O1 is an arbitrary circle of the given bundle. It is orthogonal to O since passes through the pair of conjugated through O points, it is orthogonal O1 since passes through the pair of conjugated through O1 points, and since it passes through P and is orthogonal to one of bundle circles, it is orthogonal to all circles of tangent bundle. Further is similar to previous cases.

If the center of bundle P lies on O, then either O itself belongs to this bundle or is not tangent to any circle from it.

Our list is finished.

Construction of circles isogonal to three given and completion of Appolonius’s problem.

Last items settle Appolonius’s problem. Let’s repeat: we choose two bisectrixes D1 and D2 between A and B and between B and C. Draw a circle from bundle (D1, D2) tangent to A (either B, or C). Such circles may be two. It is tangent automatically to all remaining since it is isogonal to all three circles. As these two bisectrixes can be chosen by 2x2 = 4 ways, altogether there are 4х2 = 8circles tangent to given A, B, C. How to comprehend geometrically the offered method of solution of Appolonius’s problem?

Let's begin with simple but an interesting case: we search for a circle tangent to A, B, C which are tangent to each other. In this case there is only one bisectrix between any pair of initial circles. Since any of three circles is isogonal to two remained (is tangent to them) it is orthogonal to the bisectrix between two others. Therefore each bisectrix swaps points of tangency of the opposite circle with two others and leaves motionless the last point of tangency (since simply passes through it). This case of a disposition of points of tangency and bisectrixes is considered in the theorem of triple symmetry (paper 3). It follows from this theorem that all bisectrixes are intersected at the angle of 60 degrees.

It is possible to construct a bisectrix for example between A and B as a circle from the tangential bundle orthogonal to given C using item I of the list. Since the bisectrix is orthogonal itself to the opposite circle, it is enough to discover its intersection points with this circle and to choose from these pairs by a point and to draw two circles O1 and O2 tangent to A, B, C. 
Drawing 4.

(Three circles A, B, C tangent to each other; three bisectrixes between them D1, D2, D3, intersected among themselves at two points; circle O orthogonal to A, B, C; intersection points of bisectrixes with circles A, B, C and two circles drawn through these points. These circles are tangent to A, B, C and conjugated through О.)

We can search for a circle tangent to A, B and C in bundle (B,C). Such circles in this bundle are B and C. They do not give us new circles, and whether the circle is tangent to itself, is a problem more likely philosophical.

We see that in this case the offered algorithm of a solution of Appolonius’s problem works successfully and conveniently. Successfully it works always, but not always it is possible to name it "convenient". Let, for example, there are none-intersected circles among given. Then the imaginary bisectrixes appear. To discover the centers of the bundle set by imaginary bisectrixes is not very convenient. How it can be made? To discover the center of the imaginary bundle set by inversions (real or imaginary) S and T one can draw two circles orthogonal to S and T. Intersection points of these circles are the centers of bundle (S,T). We construct the orthogonal circle taking an arbitrary point X and drawing the circle through X, S(X), T(X) – for this purpose we have no need to know if real or imaginary are S and T and to know the motionless circles of these inversions.

Let now S and T – bisectrixes between A and B and between B and C. We choose point X on circle A. Then S(X) and T(X) can be discover by drawing circles O1 and O2 orthogonal accordingly to A and B; B and C through point X. Let O1 intersects B at points В1 and В2, O2 intersects C at points С1 and С2.

Drawing 5.

(Three not intersected circles A, B, C; point X on A; circle O1 which is passing through X and orthogonal to A and B; circle O2 passing through Х and orthogonal to A and C; В1 and В2 – points of intersection of O1 with B; С1 and С2 –points of intersection of O2 with С)

Circles O1 and O2 are tangent to each other since they are orthogonal to circle A and both pass through point X lying on A. It is easy to show (paper 3, 6) that under the action of S point X moves along O1 and S(X) is equal to one of two intersection points of O1 with B – В1 or В2. Specifying to what is equal S(X) we choose one of two bisectrixes between A and B (see paper 6). Similarly, specifying Т(X) we choose a bisectrix between A and C.

Circle passing through X, В1, С1 is orthogonal to some two bisectrixes (one between A and B, the second – between A and C) because the pair of points X, В1 is conjugated through the bisectrix between A and B and the pair X, С1 – is conjugated through the bisectrix between A and C. Just so each of three circles: X, В1, С2; X, В2, С1; X, В2, С2 is orthogonal to some two bisectrixes between A and B and between A and C. It follows from here that all these four circles – are isogonal to A, B and C (form with all of them equal angles).

To discover the center of the bundle formed by the bisectrixes between A and B and between A and C it is necessary to construct in each of four cases one more circle orthogonal to pair of the bisectrixes. For this purpose we choose point Z on A and do with it similar operations. We get four circles; each of them is orthogonal to some pair of bisectrixes between A and B and between A and C. But it is not always simply to specify what of these fours circles are orthogonal to the same pair. At least it cannot be named convenient.

It is possible to act in another way. Since A, B, C are not intersected there is a circle I orthogonal to all of them. It is orthogonal also to all bisectrixes. See paper 6 for method of constructing it. Intersection points of I with four constructed circles which are passing through X also are the centers of bundles of the corresponding pairs of bisectrixes. If some circle from the four does not intersect I, then the pair of bisectrixes corresponding to this circle is intersected forming the real bundle. So, we discover the centers of the imaginary bundles formed by bisectrixes.

The required circle, tangent to A, B and C, lies in the bundle orthogonal to the bundle of bisectrixes. Since in the considered case the bundle of bisectrixes is imaginary, the tangential circle lies in the real bundle. We use point K. 

Small application of the theory of groups leads to the big simplification.

In all our constructions the main role is played by a circle from a bundle of two bisectrixes orthogonal to one of three given circles A, B, C. Now we express algebraically inversion which it realizes. Let S is a bisectrix between A and B, Т – a bisectrix between A and C. On the theorem of bisectrixes one of two bisectrixes between B and C lies in the same bundle as S and T. Designate it as H. On the theorem of inversions of one bundle any composition of S, Т and Н is again an inversion (and belonging to the same bundle). We consider action of F = T*H*S on circle А. S(A) = B, X(B) = C, T(C) = A (by definition of bisectrixes). Hence F(A) = A or FAF = A, i.e. F commutes with A (is orthogonal). Consecutive action of three bisectrixes returns A on the place. It happens, whatever three bisectrixes existing between A, B and C we choose. As we have chosen Н so that it belongs to bundle (S,T), F is an inversion (real or imaginary). F is orthogonal to A, i.e. if there is a motionless circle of inversion F (i.e. F is the real inversion), this circle is the required circle from the bundle of bisectrixes orthogonal to A; and through its intersection points with A passes tangential to A, B, C circle.

We can already make a useful conclusion: if F = T*H*S is the imaginary inversion, the required circle tangent to A, B, C does not exist because F and A have no intersection points, and F has no motionless points at all. See item K, part 2.

Let F is the real inversion. We use the equality F = T*H*S for determination of intersection points of F and A (using paper 5 terminology: F*A = F = T*H*S*A is the beplet symmetry with the extremities at required points) since F and A are orthogonal inversions. We draw circle I orthogonal to A, B, C (we assume that circles A, B, C are Lobachevsky's circles – if they are Riemannian, construction of bisectrixes is not difficult and the centers of their bundles also are easy to discover; see paper 1). I is orthogonal also to all bisectrixes, hence I is orthogonal to F. Let A1 and A2 – intersection points of I with A; since I and A are orthogonal to F, F(A1) = A2. Let X an arbitrary point on A. Since F(X) = T(H(S(X))) we can discover F(X) using the reception, similar to drawing 5.
Drawing 6.

(Circle A; circles I and F orthogonal to A and to each other; intersection points of I and A – A1 and A2; intersection points of F and A – F1 and F2; point X and point F(X); circle W orthogonal to A and passing through X and F(X); circle Z which is passing through points F1 and F2)

Circle W is orthogonal to F since passes through a pair of conjugated through F points. Circles W and I form a bundle orthogonal to F and A, it means that any circle orthogonal to W and I passes through intersection points of F and A. Draw this circle Z and we get required points F1 and F2 through which the circles tangent to A, B, C pass. Then we show how to build point F(X) = T(H(S (X))).

Drawing 7.

(Three not intersected circles A, B, C; point X on circles A; circle O1 orthogonal to A and B, intersecting B at points В1 and В2; circle O2 which is passing through В1 and orthogonal to B and C, it is tangent to circle O1 at point В1. Intersection points of O2 with C – С1 and С2)

S (X) is either В1 or В2. We can choose an arbitrarily point from this pair, let it be В1. Draw through В1 circle O2, described in the delineation, orthogonal to B and C, and intersecting C at points С1 and С2. Н(S(X)) is either С1 or С2 – we can choose arbitrarily. We draw now circle W through three chosen points X, Н(X) and S(H(X)). It is orthogonal to S and Н, therefore, is orthogonal to both T and F, hence, F(X) lies on W. But F(X) lies and on A, and because of this F(X) is the intersection point of W with A. If F(X) = X, X is the required point; we have discovered a motionless point; W is tangent to A and is the required circle tangent to A, B, C. If W is not tangent to A, the intersection point of W with A other then X is the required F(X). Construction is convenient by not demanding a choice of the third bisectrix and by not demanding as a matter of fact drawing bisectrixes. They are present only in proofs. Besides we have adduced the simple mode of construction of circles isogonal to given A, B, C. 
Algorithm for Appolonius’s problem.

We summarize the done work. Describe the algorithm of construction of the circle, tangent to given A, B, C; or rather, the algorithm of discovering tangency of this circle to one of three given, e.g. to A.

1. We take an arbitrary point X on A. Draw through it a circle, orthogonal to A and B. Choose any of two intersection points of this circle with B.

2. From the chosen point draw a circle orthogonal to B and C. Choose any of two intersection points of this circle with C.

3. Draw circle G through X and two chosen in items 1 and 2 points. We designate the second intersection point of this circle with A as Y. (If drawn circle G is tangent to A, it is also tangent to both B and C.)

4. Draw circle I orthogonal to A, B, C. It intersects circle A at points I1 and I2.

5. Draw circle W through I1 and I2 orthogonal to A; draw circle V through X and Y also orthogonal to A.

6. If W and V are intersected, there are no required points (F sets the imaginary inversion). It is necessary to choose differently points from the pairs of intersection D and C with orthogonal it circles (items 1 and 2).

7. If W and V have no common points, the centers of the imaginary bundle formed by W and V are the required.

The note. Drawing of circle I orthogonal to A, B, C can be bulky enough. Besides, it exists only if A, B, C are Lobachevsky's circles. It is possible to do without it: to take one more point X1 on A, to make the construction of items 1-3. We designate the gotten point as Y1. Then draw circle W not through points I1 and I2 but through X1 and Y1. Items 6 and 7 are left without modifications. 

In the offered algorithm it is not said about bisectrixes at all, and this strongly simplifies construction.

The algorithm discovers points of tangency of circle O (tangent to given A, B, C) with A. Or rather it discovers two points of tangency of circle A with circles O1 and O2, each of them is tangent also to circles B and C. O1 and O2 are symmetric in the circle commuting with A, B, С. To construct circles O1 and O2 it is necessary to discover also their points of tangency with circles B and C. The easiest way to do is by inverting the gotten points of tangency through bisectrixes S and H. It can be made, as well as earlier: to draw a circle orthogonal to A and B through the constructed point, etc. It is possible to discover points of tangency with B and C and in another way, simply realizing the offered algorithm on these circles. But here it is important not to be mistaken in bisectrixes in order not to get on B and C points of other circles also tangent to A, B and C. 
As it has been told F = T*H*S is an inversion orthogonal to A, and F1 = S*T*H – orthogonal to B, F2= H*S*T – orthogonal to C. Then using these equalities (enough the first, F = T*H*S) we discover when the required circle does not exist. As it has been shown it is not present when inversion F is the imaginary. So, when F is the imaginary inversion?

The theorem of a composition of inversions of one bundle.

Whatever are inversions T, H, S belonging to one bundle their composition is the imaginary inversion when and only when one or three of them are imaginary. 
Proof.

1. If composition T*H*S is the imaginary inversion, all these inversions lie in the imaginary bundle (since in the real or tangent bundle there are no imaginary inversions).

2. A composition of three real inversions of one bundle is always the real inversion.

3. A composition of two imaginary inversions is always the real inversion. (It is possible to be convinced of it considering a bundle of concentric circles, see paper 4 when this composition is a similarity).

4. Therefore, if either Н or S is the imaginary inversions, or T and H are the imaginary inversions and the remained inversion is real, then T*H*S is the real inversion since we can substitute a composition of two imaginary inversions by a composition of two real ones and the whole composition can be reduced to three real inversions which is always real.

5. If T and S are imaginary and X is the real we cannot simply rearrange them in composition T*H*S. But it is possible to use the concept of conjugated elements of group of motions (see paper 5). Let’s consider composition К = S*T*H. K is the real inversion since S and T are imaginary. Let’s map the motionless circle of inversion K by inversion S. We get inversion S*(S*T*H)*S-1 = T*H*S (we have removed the parentheses and have used the fact that S is involution). Since K is the real inversion, S (K) is also the real inversion. Q.E.D
6. Let’s prove that if there is only one imaginary inversion in a composition, e.g. Н, the outcome is the imaginary inversion. We prove by contradiction. Let outcome is real inversion K. К = T*H*S, hence H = T-1*K*S-1 = T*K*S. Right hand side is the composition of three real inversions; therefore, X is also real. The contradiction.

7. The composition of three imaginary inversions due to item 3 is reduced to the composition where only one imaginary inversion and two real. This composition according to previous item is imaginary. Q.E.D.

We have sorted out all cases and were convinced that T*H*S is the imaginary inversion only when there are one or three imaginary bisectrixes.

Geometrical conclusions.
Using the given reasoning we discover the unique nontrivial case when there is no required circle O tangent to three given A, B, C.

It should be such disposition of circles A, B, C that for all cases of a choice of bisectrixes X and S (the remained bisectrix between A and C gets out automatically, it is that which lies in the bundle of first two chosen) composition T*H*S is imaginary. How to choose it? If it actually is not drawn on a delineation and we do not see intersection points of bisectrixes. For this purpose I’ll use a simple property: let three bisectrixes form a bundle. We substitute first two of them with the second possible bisectrixes. Then the remained, third bisectrix, belongs to the bundle formed by the substituted. But if we substitute only one (or all three bisectrixes), the turned out three bisectrixes cannot be in one bundle. It is not difficult to prove the property. I designate this “replacement rule” as (!).

Let's designate as Т1 and Т2 two possible bisectrixes between A and C, as S1 and S2 – two possible bisectrixes between A and B, as Н1 and Н2 – between B and C. If it is known any one case when bisectrixes form a bundle, we can discover all remaining chances using only a rule (!). Let, for example, Т1, S1, Н1 are in one bundle. Then, on (!) Т2, S2, Н1 are in one bundle; the same is for Т2, S1, Н2 and T1, S2, H2. I.e. any two bisectrixes with the code 2 (not belonging to the first bundle) and one bisectrix with the code 1 (belonging to the first bundle) are in one bundle. If we apply the rule (!) to any of enumerated triples of bisectrixes we get the case already enumerated. Triangle bisectrixes are get out in the same way.

First of all we’ll show that if any two circles, for example, B and C are intersected, then regardless of A disposition (except tha case when A is in one bundle with B and C) there is O tangent to A, B, C. The condition that B and C are intersected is equivalent to that their bisectrixes Н1 and Н2 are both real. We choose from Т1, Т2 and S1, S2 by one real bisectrix (there is at least one real bisectrix between any circles). Whatever bisectrixes Т1 or Т2 belongs to the bundle formed by chosen bisectrixes it is real. Therefore we have three real bisectrixes in one bundle, their composition is real, and hence, the required circle O exists.

Let all three A, B, C are not intersected. In this case there are one imaginary and one real bisectrix between each pair of circles. Let all real bisectrixes have the code 1, and imaginary – code 2. Assume that all real bisectrixes belong to one bundle. In this case T1*S1*H1 is involutive and real. Then circles of each triple (T2, S2, H1),  (Т2, S1, Н2), (Т1, S2, Н2) belong to one bundle. All compositions T1*S1*H1, T2*S2*H1, T1*S2*H2 are real: there are no imaginary inversions in the first and by two in others. Each of compositions gives us the height dropped on A and its own pair of circles tangent to A, B, C. So, we have get eight circles tangent to three given A, B, C not having generic points. 
Let's assume that there are two real bisectrixes and one imaginary in a bundle. We appropriate for convenience to real bisectrixes the code 1, and to the imaginary – 2. Let T1, H1, S2 are in one bundle, then triples T2, H2, S2; T2, H1, S1; T1, H2, S1 on (1) are also in one bundle. We see that three or one imaginary bisectrix enter into each composition, therefore outcome always turns out imaginary. So, we have discovered the unique case when required O does not exist. Now we consider visually variants of construction of O tangent to three circles A, B, C not having generic points.

1. Among three circles A, B, C one separates two others.

Drawing 8.

(C separates circles A and B)
In this case required O does not exist. It follows from the previous reasoning that in the case of such disposition of circles three real bisectrixes between A, B, C do not belong to one bundle.

2. Neither circle separates two others.

Drawing 9.

(Three circles A, B, C and their eight tangents, below is their description)
In this case as it has been proved there are 8 required circles since three real bisectrixes between circles belong to one bundle. These eight circles can be grouped by pairs of the circles symmetric in circles orthogonal to A, B, C: O1, O2; O3, O4; О5, О6; О7, О8. Сircles in each pair are uniformly arranged with respect to А, B, С. O1 and O2 do not separate circles A, B, C; everyone of O3 and O4 separates A from B and C; О5 and О6 separate B from A and C, О7 and О8 – C from A and B. The property of separation can be deduced from the fact that a circle tangent to two given and separating them is orthogonal to the imaginary bisectrix between them. Therefore, if all bisectrixes are real, O1 and O2 do not separate any pair of circles and if only one bisectrix is real, the common tangent circle does not separate that pair where the bisectrix is real.

Now we count up number of required circles in the case when there are intersected circles among A, B and C. Let only B and C are intersected, then Н1 and Н2 are both real, Т1 and S1 are also both real, Т2 and S2 are both imaginary. Let T1, S1, H1 belong to one bundle. Then triples T2, S2, H1; T1, S2, H2; T2, S1, H2 also belong to one bundle.

There is exactly one imaginary bisectrix in the composition of the third and fourth cases, therefore the composition is the imaginary inversion and does not set any tangent circles. In two other cases the composition is real, so we get 2х2 circles tangent to given. As it has been shown earlier there is always a variant for a pair of intersected circles when the real bisectrixes belong to one bundle, therefore there is no need to consider other combinations. Let now, besides C and C, A and B are also intersected. Therefore, S1 and S2 are both real as well as H1 and Н2. Let Т1 is real, Т2 – is imaginary. Let Т1, S1, Н1 are in one bundle. It is easy to be convinced, that an imaginary composition turns out only in two variants: T2, S1, H2 and T2, S2, H1. The remaining two are real and set 2х2 = 4 required circles. The variant when T2, S1, H1 are in one bundle is similar previous differing only by coding of bisectrixes S and H, that has no significance since both are real.

If all three circles A, B, C are intersected among themselves, all bisectrixes between them are real, that is all compositions are real and consequently there are 8 variants of disposition of O tangent to A, B, C. See paper 1.

Before to finish reviewing of Appolonius’s problem, which is in my opinion is an excellent testing area for ideas and methods of the geometry of circles, I complete two gaps. The first – I did not consider the cases when there are tangent circles among A, B and C. In this case there is the case when 6 circles tangent to A, B, С exist (and as we saw – sometimes only two).

The second – I have not shown that any combination of the real and imaginary bisectrixes belonging to one bundle is possible, i.e. that exist A, B, C for which given T, H, S are the bisectrixes.

Let's prove, that whatever inversion T, H, S are, if T*H*S is again an inversion there are circles A, B, C such that T, H, S are the bisectrixes between them. Let T*H*S = F. We choose some circle A, orthogonal to F, F(A) = A. Let S(A) = B, X(B) = C. Since F(A) = T(H(S(A))) = A on choice of A, Т(C) = А. We have discovered three circles A, B, C such that arbitrary T, H, S belonging to one bundle are bisectrixes of these circles. Q.E.D.

Also I remind that we assumed that A, B, C are not from one bundle.

Paper 9.

Six remarkable points of the geometry of circles. An angle between circles.

The paper summary.

In the paper new properties of six intersection points of three orthogonal circles (or points of tangency of four mutually tangent circles) consider. The theorem that by means of several compositions of inversions is possible to map any three given points to any others is proved, and properties of the angles formed by three intersected circles are studied.

The theorem of mapping of three points.

It has been proved in paper 6  that if some continuous map keeping circles (i.e. transforming the points lying on one circle to the points again lying on one circle, and the reverse) leaves motionless three points, it is either an inversion or the motionless motion. Now we’ll prove that by means of a composition of inversions any three points can be mapped to any others. We formulate more precisely.
Let three points A, C, C are given. For any three points F, E, D there is a composition f of inversions such that f(A) = F, f(B) = E, f(C) = D. The proof consists of two stages. At first we prove that three arbitrary points can be mapped in three others. In the process we do not pay attention to what point (from three possible) A, B, C are mapped. Then we show that by means of a composition of inversions is possible to rearrange points of the given triple arbitrarily. In aggregate these two statements give the required: we map A, B, C to F, E, D not caring of that to which points pass A, B, C, and then as necessary we rearrange points.

Let's prove lemma:

It is possible to map by means of compositions of three inversions three mutually tangent circles S, T, H to any three mutually tangent to circles S1, T1, H1. 
Proof. Let I1 is the inversion mapping S in S1; I1(S) = S1. I1 is one of two bisectrixes between S and S1. There are two bisectrixes between I1(T) and T1. We choose that from them which is orthogonal to S1 = I1(S) and designate it as I2. Such bisectrix exists since S1 is tangent to Т1 and I1 (T) (the first is true on the condition, the second – since S is tangent to T their images under the inversion through I1 tangent to each other). Then I2(I1(T)) = T1, I2(I1(S)) = I2(S1) = S1. I.e. I2*I1 maps two of three existing circles in that we have wanted. The third, Н, has passed to I2(I1(H)). This circle is tangent to I2(I1(S)) = S1 and I2(I1(T)) = Т1 (since Н is tangent to S and T). H1 is tangent to these two circles on the condition. So, S1 and Т1 are tangent to each other, Н1 and I2 (I1 (H)). The first of all it is important that S1 and Т1 are tangent to Н1 and I2(I1(H)), it follows from here that S1 and Т1 are orthogonal to any bisectrixes between Н1 and I2(I1(H)). If both of them are orthogonal to the same bisectrix – we designate it as I3 – then I3(I2(I1(H))) = H1, and since I3 is orthogonal to S1 and Н1 the composition of inversions W = I3*I2*I1 is the required: I3(I2(I1(H))) = H1, I3(I2(I1(S))) = I3(T1) = T1, I3(I2(I1(S)) = I3(I2(S1)) = I3(S1) = S1. Q.E.D.

If S1 and Т1 are orthogonal to different bisectrixes between Н1 and I2(I1(H)), S1 and Т1 belong to different sets of tangential to Н1 and I2 (I1 (H)) circles. It is easy to see that it is impossible. Q.E.D.

This proof is simply generalized on three-dimensional and many-dimensional spaces – it is possible to map by a composition of inversions n mutually tangent orbs to any others n mutually tangent orbs.

By means of the lemma we prove the first part of the theorem of three points. We draw through three given points A, B, C three circles tangent to each other in these points: S, T, H. We always are able to do it. Draw through arbitrary points F, E, D circles S1, Т1, Н1 tangent to each other at these points. As it is proved in the lemma there is a composition of inversions (we designate it W) mapping circles S, T, X to S1, T1, H1. Hence, W maps points of tangency S, T, X among themselves to points of tangency S1, T1, H1. Thereby W maps A, B, C to F, E, D. However, we do not know what point to what, it is unknown if W(A) = F or W(A) = E or W(A) = D. Now we want to prove that by means of compositions of inversions we can arbitrary rearrange any three points. As a matter of fact it has been done already in paper 3 in the theorem of triple symmetry. For any three points X, Y, Z there are an inversions leaving any one of them motionless and swapping two others. By means of composition of such inversions is possible to rearrange three given points arbitrary. Q.E.D.

Now it is trivial to prove the formulated theorem.

1. We map by means of described earlier W points A, B, C at points F, E, D.

2. If W(A) = F, W(B) = E, W(C) = D, W is the required map. If not, we rearrange as necessary points F, E, D (or A, B, C) and get the required map. Q.E.D.

Compositions of even number of inversions are called as “characteristic motions”. They have important differences from the motions of odd number of inversions. For example, each inversion changes orientation. Therefore characteristic motions leave orientation invariable (they change it even number of times), and all none-characteristic motions change orientation to the opposite. Composition of two characteristic motions is again a characteristic motion and identical motion (when varies nothing) is also a characteristic motion (zero inversions or the same twice – in any case even number of inversions – take part in it). It follows from here that characteristic motions form a subgroup in group of all motions of the geometry of circles (see paper 5).

We have proved that there is a composition of inversions W such that W (A) = F, W (B) = E, W (C) = D whatever are the points A, B, C, D, E, F. Let’s prove that there is a characteristic motion also mapping these points to each other. If there is an even number of inversions in W, W is the required characteristic motion. If odd we realize one more inversion through circle M passing through F, E, D. M*W is the required characteristic motion because W maps three points as necessary and M – leaves all of them on the places. M*W is a characteristic motion since it has an even number of inversions. Q.E.D.

Now it is very easy to prove the theorem of the univalent representation of characteristic motion by its action on three points. Let three arbitrary points A, B, C and three arbitrary points F, E, D are given. There is a characteristic motion W such that W(A) = D, W(B) = E, W(C) = F, and if V is anther characteristic motion which values coincide on points A, B, C with values W, then W = V (these motions coincide on all points). 
Proof. We have just proved existence of such characteristic motion W. Let there is one more characteristic motion V such that V(A) = D, V(B) = E, V(C) = F. We consider motion W-1*V. It is also a characteristic motion. W-1*V(A) = W-1(D) = A, W-1*V(B) = W-1(E) = B, W-1*V(C) = W-1(F) = C. So, W-1*V leaves motionless points A, B, C. Hence, under the theorem of three motionless points (paper 6) it is either an inversion or identical motion. Since W-1*V is the characteristic motion, it cannot be an inversion, hence W-1*V is motionless on all points that is identical motion, and W(X) =V (X) for all points. Q.E.D.

If among W or V there are none-characteristic motions their composition can be an inversion.
Six remarkable points.

Now we’ll study six intersection points of three orthogonal circles and prove that they are the same points as six points of tangency of four mutually tangent circles which we studied in paper 3.

Also we count up in this section angles between circles. I designate an angle between circles X and Y as (<XY or if markings of circles consist more than of one letter – (<X1,Y1 (dividing by a comma circles’ markings).

Drawing 1.

(Mutually orthogonal circles D1, D2, D3; intersection points of D3 and D2 – A, B; intersection points of D1 and D3 – C, D; intersection points of D1 and D2 – E, F; circle S which is passing through points A, Е, D (points Е and D lie inside D3 and D2, point A inside intersection of all three circles)).

We already considered in paper 6 the circles constructed on intersection points of three given circles. Let’s consider such circle, for example S, and determine its angles with initial D1, D2, D3. Draw any bisectrix I between D2 and D3. Since D1 is isogonal to D2 and D3 (and since it is orthogonal to both of them and, therefore, to all circles of the bundle), I it is orthogonal to D1. I(D1) = D1, I(D2) = D3. Therefore (we used this many times in paper 8), I maps intersection points of D1 with D2 to intersection points of D1 with D3 (but it is unknown what point to what). If J is the other bisectrix between D2 and D3, it maps these points in unique remained mode. Let, for example, I(E) = D, then I(S) = S and S is orthogonal to I. We have shown that S is orthogonal to one of bisectrixes between D2 and D3. We can consider that this bisectrix is designated as I. Then the angle between S and D2 is equal to the angle between I(S) and I(D2) and is equal to the angle between S and D3. Let's use the designations introduced in the beginning of section: (<S,D2 = (<S,D3; (<S,D2 + (<S,D3 = 90 degrees; hence, (<S,D2 = (<S,D3 = 45 degrees. (<D2, D3 is the right by definition, therefore, it is not important through the basic or the complementary angle (<D2,D3 passes S. We pay attention that though S bisects the angle between D2 and D3, S is a bisectrix between them but is tangent to one of them.

So, we have calculated the angle between S and D2 and D3. It could be absolutely similarly shown that the angle between S and D1 is also 45 degrees. It is possible to consider, for example, a bisectrix between D1 and D3, it leaves motionless point D and swaps points A and E. Let’s consider now circle Т which is passing through A, C and F (two remained points of intersection D1 with D2 and D3). Precisely by the same reasoning we show that it forms with D1, D2, D3 angles in 45 degrees. But from here follows that S is tangent to T at point A (it is necessary to pay attention to a relative positioning of these angles, or that they tangent at A to the same bisectrix between D2 and D3, and hence are tangent to each other). 
The following is absolutely similarly proved:

1. Any of eight possible circles constructed on intersection points D1, D2, D3 with each other forms with D1, D2, D3 angles in 45 degrees.

2. If any two of these circles have only one common point from six intersection points (as S and Т have only one common point), they tangent to each other at this point.

We take circle S and discover three circles which have with it by one common point (from six intersection points). S passes through A, Е, D; Т – through A, C, F; Н – through F, D, B; K – through C, Е, B. All these four have only by one common point among themselves, and on proved are tangent to each other. Remained four of eight possible circles also are tangent to each other since in this four each circle has with another only by one common point (from six intersection points of D1, D2, D3). 

Three orthogonal circles D1, D2, D3 determine inversion W commuting with them. This inversion maps the first four circles to the second, each circle to none-intersected with it. For example the circle which is passing through A, Е, D to the circle which is passing through C, F, B.

We have shown that six intersection points of orthogonal circles are six points of tangency of four mutually tangent circles. But we haven’t shown the inverse. Whether it is possible that any six points of tangency of four mutually tangent circles are not the intersection points of any three mutually orthogonal circles? No. It’ll be proved now that all possible six of points of tangency of any four circles are “identical”, i.e. by means of a composition of inversions it is possible to map any six points of tangency of four circles to any other six of points of tangency of other four circles.

The proof is trivial. In the first part of paper we have proved that three mutually tangent circles can be mapped to any other three mutually tangent circles. Then the fourth tangent to the initial three passes to tangent to their images under this composition. There are two circles tangent to three mutually tangent. They are symmetric in the circle which is passing through three points of tangency. Therefore, one having added, if necessary, the inversion through this circle can map by means of a composition of inversions the four of mutually tangent circles to any other four of such circles. (At first we map three circles to three, and then if it is necessary, we add the inversion through the circle which is passing through points of tangency). Under this map six points of tangency pass to six points of tangency. Q.E.D.

From here follows that all the six of points of tangency “are identical” (or are isomorphic, paper 3), i.e. if any property of the geometry of circles is true for one six it is also true for another six. Since, as it has been proved, 6 intersection points of three mutually orthogonal circles are the points of tangency of four circles they can be mapped to points of tangency of other four circles. Under a composition of inversions three initial orthogonal circles pass to three other orthogonal circles on which intersection points of tangency of the second four mutually tangent circles lie. So we have proved the inverse: 6 points of tangency of four mutually tangent circles necessarily lie on the intersection of three mutually orthogonal circles. We could prove it also in another way, less “abstract”. But it is necessary to pay attention to the reasoning of this proof.

In order to understand better the structure of these six points we draw any inversion with the center at one of the intersection points, for example, A. Under this inversion the circles intersected at A pass to perpendicular straight lines, the third circle – to the circle with the center at the intersection point of these straight lines, and point A – to infinitely remote point.

Drawing 2.

(Two perpendicular straight lines; a circle with the center at their intersection point, the circles which are passing through two intersection points of the circle with the straight lines and the center of the circle; straight lines passing through intersection points and initial straight lines)
Calculation of angles in tri-circle.

At first, we calculate angles in the already known case when three circles D1, D2, D3 are orthogonal to each other. We define angles between circle S (passing through A, Е, D – intersection points of circles D1, D2, D3) and circles D1, D2, D3 (see drawing 1) not using concept a bisectrix. Each of three points A, Е, D lies inside at least one initial circle (such triple of points from six intersection points exists at least because of D1, D2, D3 are Riemannian circles). Then from drawing 1 we get three equations connecting angles (<D1,D2; (<D2,D3; (<D1,D3 and angles (<S,D1; (<S,D2; (<S,D3 among themselves.

Let's consider intersection of circles S, D2, D3 at A. We get the equation: (<S,D2 + (<D2,D3 + (<D3,S = 180 degrees. Now we consider intersection of circles at E. We get the equation: (<S,D2 + (<D2,D1 + (<S,D1 = 180 degrees. At last at point D we get the equation: (<S,D1 + (<D3,D1 + (<D3,S = 180 degrees. Because (<D1,D2 = (<D3,D2 = (<D1,D1 = 90 degrees we receive the set of equations:

(<S,D2 + (<S,D3 = 90

(<S,D2 + (<S,D1 = 90

(<S,D1 + (<S,D3 = 90

Having solved it we discover (<S,D1 = (<S,D2 = (<S,D3 = 45 degrees. The similar equations can be made also for the remained 7 circles constructed on intersection points. Making them we consider the angle (<D1,D2 or (<D3,D1 or (<D1,D3 from one or another side. Since this angle is right there is no difference from what side to consider it – its magnitude not varies.

Now we calculate angles in the case of arbitrary Riemannian tri-circle. Let D1, D2, D3 are arbitrary Riemannian circles, i.e. each circle separates intersection points of two others.

Drawing 3.

(Three Riemannian circles D1, D2, D3; intersection points of D1 and D2 – A and B; intersection points of D2 and D3 – Е and F, intersection points of D1 and D3 – C and H. Circle S which is passing through E, B, H)

In this case the whole plane is divided into 8 parts. Each of these parts can be described, specifying outside or inside of circles D1, D2, D3 it lies (it not true for the case when circles form a straight line; It’s not clearly where is an interior and where – exterior of a straight line; But this elimination can be neglected in this case). In other words – each of eight parts is an intersection of interiors or exteriors of these three circles. There are eight such intersections: from each circle interior or exterior can be taken for intersection. Totally it gives 2х2х2 = 8 possible combinations. And all from these 8 hypothetically possible cases are realized on a plane. If, for example, we would take four circles there would be 16 cases. But some of them would not be realized, since the corresponding intersection would be empty.

Let's return to calculation of angles. We choose among these eight areas of a plane that which lies inside all circles and draw circle S through “tops” of this (bounding the area) tri-arcs: E, H, B. Calculate angles of S with D1, D2, D3. For this purpose use the same method as for the previous case. At points Е, Н, B three circles converge and converge in such manner that the sum of angles between these three circles is equal to 180 degrees.

(<D2,S + (<S,D3 + (<D2,D3 = 180 degrees (at point Е where D2 and D3 are intersected).
(<D2,S + (<S,D1 + (<D1,D2 = 180 degrees (at point B where D2 and D1 are intersected).

(<D1,S + (<S,D3 + (<D1,D3 = 180 degrees (at point X where D1 and D3 are intersected).

Since we consider angles (<D1,D2; (<D2,D3; (<D3,D1 as known we have three equations with three unknowns: (<S,D1; (<S,D2; (<S,D3. Solving this system we get:

(<S,D1 = 90 + 0.5* ((<D2,D3 – (<D3,D1 – (<D1,D2),
(<S,D2 = 90 + 0.5* ((<D1,D3 – (<D2,D3 – (<D2,D1),
(<S,D1 = 90 + 0.5* ((<D1,D2 – (<D1,D3 – (<D2,D3).
Let's consider now the remaining 7 circles constructed on intersection points of D1, D2, D3. As it has been shown in paper 2 and 6 there is the imaginary inversion I commuting with D1, D2, D3. I swaps intersection points of any two circles. It has been proved in paper 6 that two circles conjugated through imaginary inversion cannot have common points. It follows from here immediately that the circle drawn through any three intersection points of D1, D2, D3 cannot have common points with the circle drawn through remained three points (since the first triple of points is conjugated with the second by imaginary inversion I). From this conjugacy follows also that D1, D2, D3 are isogonal to these conjugated circles. In the same way we can trace how arc of circles D1, D2, D3 are transformed by imaginary inversion I. 

Let's return to considering of angles. Let’s take now those angles are “faced” inside of eight tri-arcs. Having calculated angles between S and D1, D2, D3 we have considered those angles between D1, D2, D3 which are “faced” inside tri-arcs (intersections of interiors of D1, D2, D3). But we can consider also complementary angles. As the angle between D1 and D2 we can consider an angle lying inside this tri-arcs as well as lying outside, equal to 180 – (<D1,D2. And do the same for each pair of circles. As there are three pairs, it is possible to make 2х2х2 = 8 combinations of angles, choosing at one moment the basic, at another – the complementary angle (I do not consider now the case when there is the right angle equal to it’s additional among these angles). On the other hand – we have eight tri-arcs. The thought arises that each of these tri-arcs just realizes one of eight possible combinations of angles. But it not so!

On drawing 3 we see that, for example, tri-arc C, E, B differs from tri-arc Е, B, Н by two angles. Angles at points Е and B are varied to additional, and the angle at point Н is equal to the angle at point C (I consider the angles “faced” inside tri-arc). Similarly with tri-arcs Е, A, Н and Н, B, F – comparing them with Е, B, Н we see that two angles (at the common arc) is varied, and the third – remained invariable. If we compare these tri-arcs, e.g. Е, C, B and A, Е, Н among themselves, we see that they differ by two angles. After imaginary inversion through I four considered tri-arcs pass to four conjugated. And thus angles in conjugated tri-arcs are identical. Thus, 4 combinations of angles are actually realized. How to discover them? It is possible to use a method similar to that was in considering possible combinations of bisectrixes between three circles. (see paper 8).
It is enough to discover any combination of the basic and the complementary angles “faced” inside one tri-arc. Having substituted two angles by the opposite we again get a set of the angles “faced” inside some tri-arc. Four possible combinations exhaust all chances of a disposition of angles.

But why only four cases are possible? It has to do with the fact that it is possible to think of an angle as a set of points. Thus, an intersection of interiors of two circles forms the same angle as an intersection of exteriors. And an intersection of interior of a circle with exterior of another circle sets the same angle as the intersection of the exterior of the first with the interior of the second. In other words – the same angle exists both outside and inside a circle. The equality of these angles is realized under imaginary inversion.

